General Linear Models
Boosted Regression Trees
Multivariate Regression Splines
Random Forests
Current Conditions According to Model
Predictions - RCP45, 2050
Predictions - RCP45, 2070
Predictions - RCP85, 2050
Predictions - RCP85, 2070
Ensemble Present Model Average
Correlation Matrix
Model Fit Details
General Linear Models
Boosted Regression Trees
Generalized Linear Model Results
Data:
C:\Withrow\Workspace\Model\glm_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 153
n(abs) = 3907
n covariates considered = 5
total time for model fitting = 0.31min
Settings:
model family : binomial
simplification method : AIC
Results:
number covariates in final model : 8
Call:
glm(formula = response ~ I(bio14^2) + bio14 + bio03 + I(bio08^2) +
bio08 + I(bio03^2) + bio03:bio08 + bio14:bio08, family = model.family,
data = dat, weights = weight, na.action = "na.exclude")
Deviance Residuals:
Min 1Q Median 3Q Max
-1.1968 -0.2817 -0.1472 -0.0370 4.2199
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 15.4958776 11.2637211 1.376 0.168904
I(bio14^2) -0.0205254 0.0066673 -3.078 0.002080 **
bio14 0.4898582 0.1644648 2.978 0.002897 **
bio03 -1.6160605 0.4776134 -3.384 0.000715 ***
I(bio08^2) -0.0007006 0.0001935 -3.621 0.000293 ***
bio08 0.5544576 0.0671201 8.261 < 2e-16 ***
I(bio03^2) 0.0250379 0.0052490 4.770 1.84e-06 ***
bio03:bio08 -0.0104152 0.0014698 -7.086 1.38e-12 ***
bio14:bio08 -0.0029344 0.0016959 -1.730 0.083586 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1303.4 on 4059 degrees of freedom
Residual deviance: 1008.1 on 4051 degrees of freedom
AIC: 1026.1
Number of Fisher Scoring iterations: 12
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.3222336
NULL Deviance : 0.32103
Fit Deviance : 0.24829
Explained Deviance : 0.072739
Percent Deviance Explained : 22.658
Threshold Methods based on Sens=Spec
Threshold : 0.04
Confusion Matrix:
observed
predicted 1 0
1 128 987
0 25 2920
AUC : 0.8655
Percent Correctly Classified : 75.07389
Sensitivity : 0.8366013
Specificity : 0.7473765
Kappa : 0.1452436
True Skill Statistic : 0.5839778
Calibration Statistics
Intercept (general calibration) : 0.002144241
Slope (direction and variation in fit) : 1.001046
Testa0b1 (overall reliability of predictors) : 0.9999018
Testa0|b1(incorrect calibration given correct refinement) : 0.9971771
Testb1|a (refinement given correct calibration) : 0.9891816
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.3130636 (sd 0.085451)
NULL Deviance : 0.32099 (sd 0.0071546)
Fit Deviance : 0.25391 (sd 0.037622)
Explained Deviance : 0.067072 (sd 0.039997)
Percent Deviance Explained : 20.804 (sd 12.346)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.045 (sd 0.0052705)
Confusion Matrix:
observed
predicted 1 0
1 120 848
0 33 3059
AUC : 0.86528 (sd 0.051902)
Percent Correctly Classified : 78.29284 (sd 3.4715)
Sensitivity : 0.7833333 (sd 0.12615)
Specificity : 0.7828788 (sd 0.034901)
Kappa : 0.1622222 (sd 0.04886)
True Skill Statistic : 0.5662121 (sd 0.13665)
Calibration Statistics
Intercept (general calibration) : -0.05831788 (sd 0.83576)
Slope (direction and variation in fit) : 0.9967887 (sd 0.32625)
Testa0b1 (overall reliability of predictors) : 0.565118 (sd 0.33633)
Testa0|b1(incorrect calibration given correct refinement) : 0.7947357 (sd 0.12585)
Testb1|a (refinement given correct calibration) : 0.3940781 (sd 0.30469)
Total time = 4.18 min
Boosted Regression Tree Modeling Results
Data:
C:\Withrow\Workspace\Model\brt_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 153
n(abs) = 3907
n covariates considered = 5
total time for model fitting = 0.61min
Settings:
random seed used : 19680828
tree complexity : 8
learning rate : 0.0836
n(trees) : 300
model simplification : cross-validation
n folds : 3
n covariates in final model : 2
Relative influence of predictors in final model:
Var rel.inf
bio08 68.46825
bio03 31.53175
Important interactions in final model:
v1 name1 v2 name2
2 bio08 1 bio03
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.5653624
NULL Deviance : 0.32103
Fit Deviance : 0.17439
Explained Deviance : 0.14664
Percent Deviance Explained : 45.677
Threshold Methods based on Sens=Spec
Threshold : 0.07
Confusion Matrix:
observed
predicted 1 0
1 138 380
0 15 3527
AUC : 0.9596
Percent Correctly Classified : 90.27094
Sensitivity : 0.9019608
Specificity : 0.9027387
Kappa : 0.3749591
True Skill Statistic : 0.8046995
Calibration Statistics
Intercept (general calibration) : 0.6896092
Slope (direction and variation in fit) : 1.370618
Testa0b1 (overall reliability of predictors) : 3.502005e-06
Testa0|b1(incorrect calibration given correct refinement) : 0.916268
Testb1|a (refinement given correct calibration) : 5.405883e-07
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.2764438 (sd 0.081089)
NULL Deviance : 0.32099 (sd 0.0071546)
Fit Deviance : 0.27616 (sd 0.034546)
Explained Deviance : 0.044831 (sd 0.037594)
Percent Deviance Explained : 13.857 (sd 11.504)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.066 (sd 0.005164)
Confusion Matrix:
observed
predicted 1 0
1 81 454
0 72 3453
AUC : 0.82969 (sd 0.05686)
Percent Correctly Classified : 87.04307 (sd 1.5059)
Sensitivity : 0.5283333 (sd 0.11811)
Specificity : 0.8837815 (sd 0.013335)
Kappa : 0.1886509 (sd 0.058086)
True Skill Statistic : 0.4121148 (sd 0.12345)
Calibration Statistics
Intercept (general calibration) : -0.7450411 (sd 0.50779)
Slope (direction and variation in fit) : 0.6841334 (sd 0.17282)
Testa0b1 (overall reliability of predictors) : 0.2879905 (sd 0.34745)
Testa0|b1(incorrect calibration given correct refinement) : 0.6995281 (sd 0.19248)
Testb1|a (refinement given correct calibration) : 0.1870175 (sd 0.27374)
Total time = 5.08 min
MARS
Random Forests
MARS Model Results
Data:
C:\Withrow\Workspace\Model\mars_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 153
n(abs) = 3907
n covariates considered = 5
total time for model fitting = 0.09min
Settings:
random seed used : 123
mars degree : 1
mars penalty : 2
Summary of Model:
nsubsets gcv rss
bio14 14 97.8 98.9
bio03 13 100.0> 100.0>
di_all_model 10 66.6 70.6
bio02 6 45.5 49.9
bio08 4 28.4 34.5
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.3229541
NULL Deviance : 0.32103
Fit Deviance : 0.24456
Explained Deviance : 0.076472
Percent Deviance Explained : 23.821
Threshold Methods based on Sens=Spec
Threshold : 0.04
Confusion Matrix:
observed
predicted 1 0
1 123 856
0 30 3051
AUC : 0.8745
Percent Correctly Classified : 78.17734
Sensitivity : 0.8039216
Specificity : 0.7809061
Kappa : 0.1627397
True Skill Statistic : 0.5848276
Calibration Statistics
Intercept (general calibration) : 0.0007556467
Slope (direction and variation in fit) : 1.000462
Testa0b1 (overall reliability of predictors) : 0.9999724
Testa0|b1(incorrect calibration given correct refinement) : 0.9971546
Testb1|a (refinement given correct calibration) : 0.9947969
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.2809671 (sd 0.11227)
NULL Deviance : 0.32099 (sd 0.0071546)
Fit Deviance : 0.26965 (sd 0.067594)
Explained Deviance : 0.051341 (sd 0.069063)
Percent Deviance Explained : 15.895 (sd 21.588)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.043 (sd 0.0048305)
Confusion Matrix:
observed
predicted 1 0
1 117 833
0 36 3074
AUC : 0.85841 (sd 0.057369)
Percent Correctly Classified : 78.59486 (sd 3.1973)
Sensitivity : 0.7629167 (sd 0.13876)
Specificity : 0.7867945 (sd 0.033431)
Kappa : 0.1595847 (sd 0.052054)
True Skill Statistic : 0.5497112 (sd 0.13843)
Calibration Statistics
Intercept (general calibration) : -0.1452222 (sd 0.92609)
Slope (direction and variation in fit) : 0.9577317 (sd 0.3567)
Testa0b1 (overall reliability of predictors) : 0.6043992 (sd 0.40404)
Testa0|b1(incorrect calibration given correct refinement) : 0.7993964 (sd 0.17484)
Testb1|a (refinement given correct calibration) : 0.50144 (sd 0.37719)
Total time = 0.83 min
Random Forest Modeling Results
Data:
C:\Withrow\Workspace\Model\rf_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 153
n(abs) = 3907
n covariates considered = 5
total time for model fitting = 0.2min
Settings:
random seed used : 19680828
n covariates considered at each split : 2
n trees : 1000
Relative performance of predictors in final model:
0 1 MeanDecreaseAccuracy MeanDecreaseGini
bio08 43.8376 37.0365 48.7077 50.1359
bio03 41.3548 66.0898 47.7084 30.4826
bio14 35.6197 38.5056 42.4204 27.6457
di_all_model 30.4478 38.0975 40.9306 31.8594
bio02 32.7213 12.1464 36.9986 40.6442
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.4737549
NULL Deviance : 0.32103
Fit Deviance : 0.21733
Explained Deviance : 0.1037
Percent Deviance Explained : 32.303
Threshold Methods based on Sens=Spec
Threshold : 0.04
Confusion Matrix:
observed
predicted 1 0
1 124 682
0 29 3225
AUC : 0.8942
Percent Correctly Classified : 82.48768
Sensitivity : 0.8104575
Specificity : 0.8254415
Kappa : 0.2084628
True Skill Statistic : 0.635899
Calibration Statistics
Intercept (general calibration) : -0.2427658
Slope (direction and variation in fit) : 0.9095443
Testa0b1 (overall reliability of predictors) : 0.2162905
Testa0|b1(incorrect calibration given correct refinement) : 0.5182278
Testb1|a (refinement given correct calibration) : 0.1038862
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.4617788 (sd 0.10034)
NULL Deviance : 0.32099 (sd 0.0071546)
Fit Deviance : 0.22195 (sd 0.028307)
Explained Deviance : 0.099033 (sd 0.031567)
Percent Deviance Explained : 30.761 (sd 9.488)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.357 (sd 0.045043)
Confusion Matrix:
observed
predicted 1 0
1 43 56
0 110 3851
AUC : 0.89299 (sd 0.035624)
Percent Correctly Classified : 95.91054 (sd 0.78733)
Sensitivity : 0.2804167 (sd 0.096846)
Specificity : 0.9856639 (sd 0.0073879)
Kappa : 0.3182706 (sd 0.10581)
True Skill Statistic : 0.2660805 (sd 0.096664)
Calibration Statistics
Intercept (general calibration) : -0.3424691 (sd 0.4829)
Slope (direction and variation in fit) : 0.8616272 (sd 0.19032)
Testa0b1 (overall reliability of predictors) : 0.4240638 (sd 0.29621)
Testa0|b1(incorrect calibration given correct refinement) : 0.5869922 (sd 0.27244)
Testb1|a (refinement given correct calibration) : 0.3959211 (sd 0.33633)
Total time = 2.74 min