General Linear Models
Boosted Regression Trees
Multivariate Regression Splines
Random Forests
Current Conditions According to Model
Predictions - RCP45, 2050
Predictions - RCP45, 2070
Predictions - RCP85, 2050
Predictions - RCP85, 2070
Ensemble Present Model Average
Correlation Matrix
Model Fit Details
General Linear Models
Boosted Regression Trees
Generalized Linear Model Results
Data:
C:\Withrow\Workspace\Model\glm_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 353
n(abs) = 4651
n covariates considered = 7
total time for model fitting = 1.44min
Settings:
model family : binomial
simplification method : AIC
Results:
number covariates in final model : 24
Call:
glm(formula = response ~ bio08 + I(bio08^2) + I(bio04^2) + bio02 +
bio04 + I(di_all_model^2) + I(bio17^2) + bio17 + I(bio02^2) +
bio09 + I(bio09^2) + di_all_model + bio02:bio09 + bio02:di_all_model +
bio08:bio04 + bio04:bio09 + bio08:bio09 + bio08:bio02 + bio02:bio17 +
bio02:bio04 + bio17:di_all_model + bio09:di_all_model + bio08:di_all_model +
bio04:di_all_model, family = model.family, data = dat, weights = weight,
na.action = "na.exclude")
Deviance Residuals:
Min 1Q Median 3Q Max
-1.652 -0.081 0.000 0.000 3.390
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.822e+02 2.033e+01 -8.966 < 2e-16 ***
bio08 1.125e+00 3.286e-01 3.424 0.000616 ***
I(bio08^2) -1.246e-02 2.330e-03 -5.347 8.95e-08 ***
I(bio04^2) -1.490e-05 2.333e-06 -6.385 1.71e-10 ***
bio02 6.526e-01 2.040e-01 3.198 0.001382 **
bio04 7.285e-02 9.651e-03 7.548 4.41e-14 ***
I(di_all_model^2) -6.561e-04 2.809e-04 -2.335 0.019518 *
I(bio17^2) -1.738e-03 5.829e-04 -2.981 0.002868 **
bio17 -3.379e-01 1.739e-01 -1.943 0.051995 .
I(bio02^2) -2.501e-03 6.348e-04 -3.941 8.13e-05 ***
bio09 -1.202e+00 2.806e-01 -4.285 1.83e-05 ***
I(bio09^2) -7.639e-03 1.590e-03 -4.806 1.54e-06 ***
di_all_model -7.464e-01 1.773e-01 -4.211 2.55e-05 ***
bio02:bio09 -5.304e-03 2.252e-03 -2.355 0.018501 *
bio02:di_all_model 2.854e-03 9.186e-04 3.106 0.001894 **
bio08:bio04 -8.305e-04 1.410e-04 -5.889 3.89e-09 ***
bio04:bio09 6.570e-04 1.153e-04 5.697 1.22e-08 ***
bio08:bio09 1.887e-02 3.717e-03 5.077 3.83e-07 ***
bio08:bio02 8.937e-03 2.641e-03 3.383 0.000716 ***
bio02:bio17 2.884e-03 9.989e-04 2.887 0.003885 **
bio02:bio04 1.310e-04 6.716e-05 1.951 0.051103 .
bio17:di_all_model 1.982e-03 1.059e-03 1.871 0.061278 .
bio09:di_all_model 5.821e-03 1.886e-03 3.086 0.002028 **
bio08:di_all_model -5.373e-03 2.057e-03 -2.613 0.008987 **
bio04:di_all_model -1.105e-04 5.140e-05 -2.149 0.031624 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2552.5 on 5003 degrees of freedom
Residual deviance: 1264.1 on 4979 degrees of freedom
AIC: 1314.1
Number of Fisher Scoring iterations: 22
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.6081446
NULL Deviance : 0.51009
Fit Deviance : 0.25261
Explained Deviance : 0.25747
Percent Deviance Explained : 50.476
Threshold Methods based on Sens=Spec
Threshold : 0.14
Confusion Matrix:
observed
predicted 1 0
1 317 496
0 36 4155
AUC : 0.9555
Percent Correctly Classified : 89.36851
Sensitivity : 0.898017
Specificity : 0.8933563
Kappa : 0.493958
True Skill Statistic : 0.7913733
Calibration Statistics
Intercept (general calibration) : 0.0008197111
Slope (direction and variation in fit) : 1.001387
Testa0b1 (overall reliability of predictors) : 0.9997452
Testa0|b1(incorrect calibration given correct refinement) : 0.9972167
Testb1|a (refinement given correct calibration) : 0.9822035
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.5731177 (sd 0.038208)
NULL Deviance : 0.51007 (sd 0.0046687)
Fit Deviance : 0.27393 (sd 0.025131)
Explained Deviance : 0.23614 (sd 0.023653)
Percent Deviance Explained : 46.308 (sd 4.7552)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.146 (sd 0.005164)
Confusion Matrix:
observed
predicted 1 0
1 306 512
0 47 4139
AUC : 0.9472 (sd 0.01056)
Percent Correctly Classified : 88.8297 (sd 1.8371)
Sensitivity : 0.8671429 (sd 0.055428)
Specificity : 0.8899215 (sd 0.02)
Kappa : 0.4733678 (sd 0.052685)
True Skill Statistic : 0.7570644 (sd 0.055732)
Calibration Statistics
Intercept (general calibration) : -0.1033484 (sd 0.24965)
Slope (direction and variation in fit) : 0.8836934 (sd 0.16397)
Testa0b1 (overall reliability of predictors) : 0.5259658 (sd 0.38141)
Testa0|b1(incorrect calibration given correct refinement) : 0.6515437 (sd 0.29262)
Testb1|a (refinement given correct calibration) : 0.4341081 (sd 0.37906)
Total time = 8.94 min
Boosted Regression Tree Modeling Results
Data:
C:\Withrow\Workspace\Model\brt_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 353
n(abs) = 4651
n covariates considered = 7
total time for model fitting = 0.31min
Settings:
random seed used : 19680828
tree complexity : 9
learning rate : 0.0587
n(trees) : 300
model simplification : cross-validation
n folds : 3
n covariates in final model : 4
Relative influence of predictors in final model:
Var rel.inf
bio04 33.76958
bio02 29.30845
bio08 26.21656
di_all_model 10.70541
Important interactions in final model:
v1 name1 v2 name2
3 bio08 1 bio02
3 bio08 2 bio04
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.8727186
NULL Deviance : 0.51009
Fit Deviance : 0.12113
Explained Deviance : 0.38896
Percent Deviance Explained : 76.253
Threshold Methods based on Sens=Spec
Threshold : 0.18
Confusion Matrix:
observed
predicted 1 0
1 340 184
0 13 4467
AUC : 0.9938
Percent Correctly Classified : 96.06315
Sensitivity : 0.9631728
Specificity : 0.9604386
Kappa : 0.7546915
True Skill Statistic : 0.9236114
Calibration Statistics
Intercept (general calibration) : 0.5276852
Slope (direction and variation in fit) : 1.845166
Testa0b1 (overall reliability of predictors) : 0
Testa0|b1(incorrect calibration given correct refinement) : 0.9902529
Testb1|a (refinement given correct calibration) : 0
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.6210477 (sd 0.065534)
NULL Deviance : 0.51007 (sd 0.0046687)
Fit Deviance : 0.26887 (sd 0.034451)
Explained Deviance : 0.2412 (sd 0.033205)
Percent Deviance Explained : 47.303 (sd 6.6032)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.209 (sd 0.025144)
Confusion Matrix:
observed
predicted 1 0
1 256 248
0 97 4403
AUC : 0.95553 (sd 0.010604)
Percent Correctly Classified : 93.10567 (sd 1.1192)
Sensitivity : 0.7254762 (sd 0.070583)
Specificity : 0.9466791 (sd 0.01109)
Kappa : 0.5621225 (sd 0.059811)
True Skill Statistic : 0.6721553 (sd 0.070796)
Calibration Statistics
Intercept (general calibration) : -0.1311575 (sd 0.23045)
Slope (direction and variation in fit) : 0.7983736 (sd 0.080029)
Testa0b1 (overall reliability of predictors) : 0.1755564 (sd 0.19542)
Testa0|b1(incorrect calibration given correct refinement) : 0.5408579 (sd 0.26312)
Testb1|a (refinement given correct calibration) : 0.1554098 (sd 0.25594)
Total time = 3.52 min
MARS
Random Forests
MARS Model Results
Data:
C:\Withrow\Workspace\Model\mars_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 353
n(abs) = 4651
n covariates considered = 7
total time for model fitting = 0.05min
Settings:
random seed used : 123
mars degree : 1
mars penalty : 2
Summary of Model:
nsubsets gcv rss
bio04 13 100.0 100.0
bio08 10 59.7 60.8
bio02 9 49.5 51.0
bio17 7 29.2 31.7
bio09 6 26.2 28.6
bio06 5 24.2 26.3
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.5733663
NULL Deviance : 0.51009
Fit Deviance : 0.27312
Explained Deviance : 0.23697
Percent Deviance Explained : 46.457
Threshold Methods based on Sens=Spec
Threshold : 0.12
Confusion Matrix:
observed
predicted 1 0
1 313 538
0 40 4113
AUC : 0.9485
Percent Correctly Classified : 88.44924
Sensitivity : 0.8866856
Specificity : 0.884326
Kappa : 0.4667576
True Skill Statistic : 0.7710115
Calibration Statistics
Intercept (general calibration) : 0.000447389
Slope (direction and variation in fit) : 1.000634
Testa0b1 (overall reliability of predictors) : 0.9999164
Testa0|b1(incorrect calibration given correct refinement) : 0.9972466
Testb1|a (refinement given correct calibration) : 0.9900544
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.5715726 (sd 0.033262)
NULL Deviance : 0.51007 (sd 0.0046687)
Fit Deviance : 0.2765 (sd 0.015927)
Explained Deviance : 0.23357 (sd 0.015171)
Percent Deviance Explained : 45.795 (sd 3.0199)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.119 (sd 0.0056765)
Confusion Matrix:
observed
predicted 1 0
1 306 568
0 47 4083
AUC : 0.94675 (sd 0.0090023)
Percent Correctly Classified : 87.71026 (sd 1.6104)
Sensitivity : 0.8671429 (sd 0.049256)
Specificity : 0.8778795 (sd 0.017753)
Kappa : 0.444858 (sd 0.042765)
True Skill Statistic : 0.7450223 (sd 0.048504)
Calibration Statistics
Intercept (general calibration) : 0.01473715 (sd 0.28396)
Slope (direction and variation in fit) : 1.000783 (sd 0.13166)
Testa0b1 (overall reliability of predictors) : 0.6486042 (sd 0.2832)
Testa0|b1(incorrect calibration given correct refinement) : 0.6212029 (sd 0.27908)
Testb1|a (refinement given correct calibration) : 0.5285948 (sd 0.23744)
Total time = 0.57 min
Random Forest Modeling Results
Data:
C:\Withrow\Workspace\Model\rf_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 353
n(abs) = 4651
n covariates considered = 7
total time for model fitting = 0.12min
Settings:
random seed used : 19680828
n covariates considered at each split : 2
n trees : 1000
Relative performance of predictors in final model:
0 1 MeanDecreaseAccuracy MeanDecreaseGini
bio02 51.2423 61.7172 71.5781 64.6245
bio04 34.2271 97.8122 62.6355 98.5002
bio17 26.3046 37.5794 47.9493 45.4199
bio08 8.2788 78.4877 42.6005 66.1096
di_all_model 27.7573 31.4360 41.9453 39.1254
bio06 31.6245 29.0094 41.0153 47.7090
bio09 12.6181 39.9307 37.2954 52.7073
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.6770872
NULL Deviance : 0.51009
Fit Deviance : 0.2389
Explained Deviance : 0.27118
Percent Deviance Explained : 53.164
Threshold Methods based on Sens=Spec
Threshold : 0.1
Confusion Matrix:
observed
predicted 1 0
1 315 517
0 38 4134
AUC : 0.9604
Percent Correctly Classified : 88.90887
Sensitivity : 0.8923513
Specificity : 0.8888411
Kappa : 0.4801499
True Skill Statistic : 0.7811924
Calibration Statistics
Intercept (general calibration) : 0.0167778
Slope (direction and variation in fit) : 1.069352
Testa0b1 (overall reliability of predictors) : 0.2489207
Testa0|b1(incorrect calibration given correct refinement) : 0.4765319
Testb1|a (refinement given correct calibration) : 0.1315216
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.6685274 (sd 0.044275)
NULL Deviance : 0.51007 (sd 0.0046687)
Fit Deviance : 0.24475 (sd 0.026463)
Explained Deviance : 0.26532 (sd 0.026088)
Percent Deviance Explained : 52.02 (sd 5.123)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.481 (sd 0.0061464)
Confusion Matrix:
observed
predicted 1 0
1 194 88
0 159 4563
AUC : 0.95656 (sd 0.012676)
Percent Correctly Classified : 95.06423 (sd 0.85153)
Sensitivity : 0.5498413 (sd 0.074661)
Specificity : 0.9810803 (sd 0.0066283)
Kappa : 0.5845288 (sd 0.072385)
True Skill Statistic : 0.5309216 (sd 0.075406)
Calibration Statistics
Intercept (general calibration) : -0.03587436 (sd 0.26353)
Slope (direction and variation in fit) : 1.003453 (sd 0.17205)
Testa0b1 (overall reliability of predictors) : 0.481483 (sd 0.23926)
Testa0|b1(incorrect calibration given correct refinement) : 0.5504052 (sd 0.20097)
Testb1|a (refinement given correct calibration) : 0.3678857 (sd 0.26212)
Total time = 2.07 min