General Linear Models
Boosted Regression Trees
Multivariate Regression Splines
Random Forests
Current Conditions According to Model
Predictions - RCP45, 2050
Predictions - RCP45, 2070
Predictions - RCP85, 2050
Predictions - RCP85, 2070
Ensemble Present Model Average
Correlation Matrix
Model Fit Details
General Linear Models
Boosted Regression Trees
Generalized Linear Model Results
Data:
C:\Withrow\Workspace\Model\glm_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 576
n(abs) = 5633
n covariates considered = 4
total time for model fitting = 0.27min
Settings:
model family : binomial
simplification method : AIC
Results:
number covariates in final model : 9
Call:
glm(formula = response ~ bio01 + I(bio01^2) + bio03 + I(bio03^2) +
I(bio15^2) + bio15 + bio08 + bio01:bio15 + bio03:bio08, family = model.family,
data = dat, weights = weight, na.action = "na.exclude")
Deviance Residuals:
Min 1Q Median 3Q Max
-2.2982 -0.0713 -0.0017 0.0000 4.5357
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.534e+02 2.704e+01 -13.071 < 2e-16 ***
bio01 9.573e-01 1.287e-01 7.440 1.00e-13 ***
I(bio01^2) -3.446e-03 3.629e-04 -9.496 < 2e-16 ***
bio03 1.035e+01 1.086e+00 9.531 < 2e-16 ***
I(bio03^2) -7.558e-02 1.268e-02 -5.962 2.49e-09 ***
I(bio15^2) -5.786e-03 7.162e-04 -8.079 6.52e-16 ***
bio15 -9.318e-01 1.676e-01 -5.559 2.72e-08 ***
bio08 6.491e-01 1.247e-01 5.206 1.92e-07 ***
bio01:bio15 7.154e-03 8.180e-04 8.745 < 2e-16 ***
bio03:bio08 -1.664e-02 3.183e-03 -5.229 1.71e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 3835.9 on 6208 degrees of freedom
Residual deviance: 1512.3 on 6199 degrees of freedom
AIC: 1532.3
Number of Fisher Scoring iterations: 11
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.7600114
NULL Deviance : 0.61779
Fit Deviance : 0.24357
Explained Deviance : 0.37422
Percent Deviance Explained : 60.574
Threshold Methods based on Sens=Spec
Threshold : 0.18
Confusion Matrix:
observed
predicted 1 0
1 533 419
0 43 5214
AUC : 0.9725
Percent Correctly Classified : 92.55919
Sensitivity : 0.9253472
Specificity : 0.9256169
Kappa : 0.6581244
True Skill Statistic : 0.8509641
Calibration Statistics
Intercept (general calibration) : 0.001056991
Slope (direction and variation in fit) : 1.002383
Testa0b1 (overall reliability of predictors) : 0.9985342
Testa0|b1(incorrect calibration given correct refinement) : 0.9967887
Testb1|a (refinement given correct calibration) : 0.9569237
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.7573343 (sd 0.026456)
NULL Deviance : 0.61779 (sd 0.0034313)
Fit Deviance : 0.24962 (sd 0.028979)
Explained Deviance : 0.36817 (sd 0.029355)
Percent Deviance Explained : 59.592 (sd 4.7056)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.172 (sd 0.011353)
Confusion Matrix:
observed
predicted 1 0
1 530 429
0 46 5204
AUC : 0.97139 (sd 0.0059164)
Percent Correctly Classified : 92.34948 (sd 0.93347)
Sensitivity : 0.9201149 (sd 0.012345)
Specificity : 0.9238414 (sd 0.010535)
Kappa : 0.6509013 (sd 0.031839)
True Skill Statistic : 0.8439563 (sd 0.014097)
Calibration Statistics
Intercept (general calibration) : 0.0162156 (sd 0.20833)
Slope (direction and variation in fit) : 1.010856 (sd 0.16993)
Testa0b1 (overall reliability of predictors) : 0.4666593 (sd 0.24584)
Testa0|b1(incorrect calibration given correct refinement) : 0.5912218 (sd 0.2644)
Testb1|a (refinement given correct calibration) : 0.3432081 (sd 0.20215)
Total time = 3.81 min
Boosted Regression Tree Modeling Results
Data:
C:\Withrow\Workspace\Model\brt_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 576
n(abs) = 5633
n covariates considered = 4
total time for model fitting = 0.28min
Settings:
random seed used : 19680828
tree complexity : 10
learning rate : 0.0699
n(trees) : 300
model simplification : cross-validation
n folds : 3
n covariates in final model : 3
Relative influence of predictors in final model:
Var rel.inf
bio01 45.44683
bio08 28.35484
bio15 26.19834
Important interactions in final model:
v1 name1 v2 name2
2 bio08 1 bio01
3 bio15 1 bio01
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.8679842
NULL Deviance : 0.61779
Fit Deviance : 0.14172
Explained Deviance : 0.47608
Percent Deviance Explained : 77.061
Threshold Methods based on Sens=Spec
Threshold : 0.2
Confusion Matrix:
observed
predicted 1 0
1 548 260
0 28 5373
AUC : 0.9916
Percent Correctly Classified : 95.36157
Sensitivity : 0.9513889
Specificity : 0.9538434
Kappa : 0.7666289
True Skill Statistic : 0.9052323
Calibration Statistics
Intercept (general calibration) : 0.2407863
Slope (direction and variation in fit) : 1.445837
Testa0b1 (overall reliability of predictors) : 2.561285e-13
Testa0|b1(incorrect calibration given correct refinement) : 0.9435936
Testb1|a (refinement given correct calibration) : 2.642331e-14
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.7432669 (sd 0.066827)
NULL Deviance : 0.61779 (sd 0.0034313)
Fit Deviance : 0.24885 (sd 0.045032)
Explained Deviance : 0.36894 (sd 0.042518)
Percent Deviance Explained : 59.745 (sd 7.1286)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.204 (sd 0.0069921)
Confusion Matrix:
observed
predicted 1 0
1 490 331
0 86 5302
AUC : 0.96924 (sd 0.011122)
Percent Correctly Classified : 93.28439 (sd 1.5028)
Sensitivity : 0.8508772 (sd 0.049797)
Specificity : 0.9412403 (sd 0.013984)
Kappa : 0.6669422 (sd 0.061914)
True Skill Statistic : 0.7921174 (sd 0.056387)
Calibration Statistics
Intercept (general calibration) : -0.07622476 (sd 0.2577)
Slope (direction and variation in fit) : 0.8740694 (sd 0.11683)
Testa0b1 (overall reliability of predictors) : 0.2570407 (sd 0.26775)
Testa0|b1(incorrect calibration given correct refinement) : 0.5054031 (sd 0.2897)
Testb1|a (refinement given correct calibration) : 0.1994819 (sd 0.23524)
Total time = 3.36 min
MARS
Random Forests
MARS Model Results
Data:
C:\Withrow\Workspace\Model\mars_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 576
n(abs) = 5633
n covariates considered = 4
total time for model fitting = 0.05min
Settings:
random seed used : 123
mars degree : 1
mars penalty : 2
Summary of Model:
nsubsets gcv rss
bio01 13 100.0 100.0
bio03 11 58.9 59.3
bio15 8 44.7 45.1
bio08 6 31.8 32.4
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.7714834
NULL Deviance : 0.61779
Fit Deviance : 0.234
Explained Deviance : 0.38379
Percent Deviance Explained : 62.123
Threshold Methods based on Sens=Spec
Threshold : 0.16
Confusion Matrix:
observed
predicted 1 0
1 528 439
0 48 5194
AUC : 0.9721
Percent Correctly Classified : 92.15655
Sensitivity : 0.9166667
Specificity : 0.9220664
Kappa : 0.6428534
True Skill Statistic : 0.8387331
Calibration Statistics
Intercept (general calibration) : 0.0001724258
Slope (direction and variation in fit) : 1.000616
Testa0b1 (overall reliability of predictors) : 0.9998777
Testa0|b1(incorrect calibration given correct refinement) : 0.9966712
Testb1|a (refinement given correct calibration) : 0.9879749
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.7696257 (sd 0.02646)
NULL Deviance : 0.61779 (sd 0.0034313)
Fit Deviance : 0.23808 (sd 0.023503)
Explained Deviance : 0.37971 (sd 0.023416)
Percent Deviance Explained : 61.464 (sd 3.7925)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.158 (sd 0.0042164)
Confusion Matrix:
observed
predicted 1 0
1 527 449
0 49 5184
AUC : 0.97127 (sd 0.0061404)
Percent Correctly Classified : 91.97914 (sd 1.2672)
Sensitivity : 0.914882 (sd 0.015577)
Specificity : 0.9202921 (sd 0.014449)
Kappa : 0.6384392 (sd 0.040887)
True Skill Statistic : 0.8351742 (sd 0.017014)
Calibration Statistics
Intercept (general calibration) : 0.0418931 (sd 0.31402)
Slope (direction and variation in fit) : 1.023892 (sd 0.1745)
Testa0b1 (overall reliability of predictors) : 0.4354009 (sd 0.30875)
Testa0|b1(incorrect calibration given correct refinement) : 0.558643 (sd 0.32263)
Testb1|a (refinement given correct calibration) : 0.3265917 (sd 0.25268)
Total time = 0.68 min
Random Forest Modeling Results
Data:
C:\Withrow\Workspace\Model\rf_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 576
n(abs) = 5633
n covariates considered = 4
total time for model fitting = 0.11min
Settings:
random seed used : 19680828
n covariates considered at each split : 2
n trees : 1000
Relative performance of predictors in final model:
0 1 MeanDecreaseAccuracy MeanDecreaseGini
bio01 53.8396 71.8018 110.0564 221.9335
bio03 46.5026 104.9509 81.3087 115.5304
bio08 45.9911 39.1408 65.5120 125.5323
bio15 43.5092 92.6888 65.3771 170.7886
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.8135087
NULL Deviance : 0.61779
Fit Deviance : 0.20033
Explained Deviance : 0.41747
Percent Deviance Explained : 67.574
Threshold Methods based on Sens=Spec
Threshold : 0.09
Confusion Matrix:
observed
predicted 1 0
1 539 363
0 37 5270
AUC : 0.9799
Percent Correctly Classified : 93.55774
Sensitivity : 0.9357639
Specificity : 0.9355583
Kappa : 0.6948069
True Skill Statistic : 0.8713222
Calibration Statistics
Intercept (general calibration) : -0.147462
Slope (direction and variation in fit) : 0.8779092
Testa0b1 (overall reliability of predictors) : 0.000727222
Testa0|b1(incorrect calibration given correct refinement) : 0.5563412
Testb1|a (refinement given correct calibration) : 0.0001727478
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.8132128 (sd 0.022876)
NULL Deviance : 0.61779 (sd 0.0034313)
Fit Deviance : 0.19798 (sd 0.022205)
Explained Deviance : 0.4198 (sd 0.020559)
Percent Deviance Explained : 67.961 (sd 3.4964)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.3365 (sd 0.042035)
Confusion Matrix:
observed
predicted 1 0
1 481 173
0 95 5460
AUC : 0.97858 (sd 0.0055847)
Percent Correctly Classified : 95.68373 (sd 0.38517)
Sensitivity : 0.8350877 (sd 0.037519)
Specificity : 0.9692891 (sd 0.0057945)
Kappa : 0.758361 (sd 0.018529)
True Skill Statistic : 0.8043768 (sd 0.033773)
Calibration Statistics
Intercept (general calibration) : -0.1117316 (sd 0.25667)
Slope (direction and variation in fit) : 0.8591193 (sd 0.088338)
Testa0b1 (overall reliability of predictors) : 0.3341178 (sd 0.28532)
Testa0|b1(incorrect calibration given correct refinement) : 0.5970467 (sd 0.35561)
Testb1|a (refinement given correct calibration) : 0.2384026 (sd 0.22122)
Total time = 2 min