General Linear Models
Boosted Regression Trees
Multivariate Regression Splines
Random Forests
Current Conditions According to Model
Predictions - RCP45, 2050
Predictions - RCP45, 2070
Predictions - RCP85, 2050
Predictions - RCP85, 2070
Ensemble Present Model Average
Correlation Matrix
Model Fit Details
General Linear Models
Boosted Regression Trees
Generalized Linear Model Results
Data:
C:\Withrow\Workspace\Model\glm_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 233
n(abs) = 4427
n covariates considered = 5
total time for model fitting = 0.3min
Settings:
model family : binomial
simplification method : AIC
Results:
number covariates in final model : 13
Call:
glm(formula = response ~ bio16 + I(di_all_model^2) + I(bio16^2) +
di_all_model + I(bio15^2) + I(bio01^2) + bio02 + bio15 +
bio01 + bio16:bio15 + bio16:bio01 + bio16:bio02 + di_all_model:bio01,
family = model.family, data = dat, weights = weight, na.action = "na.exclude")
Deviance Residuals:
Min 1Q Median 3Q Max
-2.4309 -0.1896 -0.0774 -0.0149 3.4566
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.613e+01 2.059e+01 0.784 0.433268
bio16 -1.701e-01 6.758e-02 -2.517 0.011843 *
I(di_all_model^2) -7.080e-03 1.443e-03 -4.905 9.34e-07 ***
I(bio16^2) 2.568e-04 3.603e-05 7.127 1.03e-12 ***
di_all_model -1.112e-01 1.471e-01 -0.756 0.449775
I(bio15^2) -4.670e-02 1.871e-02 -2.496 0.012576 *
I(bio01^2) -1.168e-03 4.066e-04 -2.873 0.004066 **
bio02 7.559e-01 1.499e-01 5.041 4.63e-07 ***
bio15 -5.110e-01 7.324e-01 -0.698 0.485369
bio01 -4.511e-01 1.170e-01 -3.856 0.000115 ***
bio16:bio15 3.961e-03 1.327e-03 2.985 0.002834 **
bio16:bio01 1.293e-03 2.266e-04 5.706 1.16e-08 ***
bio16:bio02 -1.851e-03 4.818e-04 -3.843 0.000122 ***
di_all_model:bio01 4.563e-03 1.629e-03 2.801 0.005094 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1850.16 on 4659 degrees of freedom
Residual deviance: 974.79 on 4646 degrees of freedom
AIC: 1002.8
Number of Fisher Scoring iterations: 9
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.6180503
NULL Deviance : 0.39703
Fit Deviance : 0.20918
Explained Deviance : 0.18785
Percent Deviance Explained : 47.313
Threshold Methods based on Sens=Spec
Threshold : 0.05
Confusion Matrix:
observed
predicted 1 0
1 207 520
0 26 3907
AUC : 0.9427
Percent Correctly Classified : 88.28326
Sensitivity : 0.888412
Specificity : 0.882539
Kappa : 0.3846501
True Skill Statistic : 0.770951
Calibration Statistics
Intercept (general calibration) : 0.000399389
Slope (direction and variation in fit) : 1.000503
Testa0b1 (overall reliability of predictors) : 0.9999411
Testa0|b1(incorrect calibration given correct refinement) : 0.9968319
Testb1|a (refinement given correct calibration) : 0.9919399
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.6049815 (sd 0.07336)
NULL Deviance : 0.39701 (sd 0.005652)
Fit Deviance : 0.221 (sd 0.031722)
Explained Deviance : 0.17601 (sd 0.032294)
Percent Deviance Explained : 44.323 (sd 8.0767)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.052 (sd 0.0042164)
Confusion Matrix:
observed
predicted 1 0
1 202 530
0 31 3897
AUC : 0.93272 (sd 0.024162)
Percent Correctly Classified : 87.9612 (sd 1.1836)
Sensitivity : 0.8668478 (sd 0.062914)
Specificity : 0.8802815 (sd 0.012984)
Kappa : 0.3717468 (sd 0.032706)
True Skill Statistic : 0.7471293 (sd 0.060622)
Calibration Statistics
Intercept (general calibration) : -0.03798806 (sd 0.33576)
Slope (direction and variation in fit) : 0.9780029 (sd 0.16708)
Testa0b1 (overall reliability of predictors) : 0.5878709 (sd 0.29351)
Testa0|b1(incorrect calibration given correct refinement) : 0.6098764 (sd 0.18539)
Testb1|a (refinement given correct calibration) : 0.4481191 (sd 0.27505)
Total time = 2.52 min
Boosted Regression Tree Modeling Results
Data:
C:\Withrow\Workspace\Model\brt_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 233
n(abs) = 4427
n covariates considered = 5
total time for model fitting = 0.17min
Settings:
random seed used : 19680828
tree complexity : 8
learning rate : 0.0718
n(trees) : 300
model simplification : cross-validation
n folds : 3
n covariates in final model : 4
Relative influence of predictors in final model:
Var rel.inf
bio16 36.16101
bio02 24.47096
bio01 21.46669
di_all_model 17.90133
Important interactions in final model:
v1 name1 v2 name2
3 bio16 2 bio02
3 bio16 1 bio01
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.8506478
NULL Deviance : 0.39703
Fit Deviance : 0.10444
Explained Deviance : 0.29259
Percent Deviance Explained : 73.694
Threshold Methods based on Sens=Spec
Threshold : 0.09
Confusion Matrix:
observed
predicted 1 0
1 222 212
0 11 4215
AUC : 0.9916
Percent Correctly Classified : 95.21459
Sensitivity : 0.9527897
Specificity : 0.952112
Kappa : 0.642399
True Skill Statistic : 0.9049017
Calibration Statistics
Intercept (general calibration) : 0.6888482
Slope (direction and variation in fit) : 1.576671
Testa0b1 (overall reliability of predictors) : 3.164136e-14
Testa0|b1(incorrect calibration given correct refinement) : 0.9063842
Testb1|a (refinement given correct calibration) : 3.219647e-15
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.5517907 (sd 0.067317)
NULL Deviance : 0.39701 (sd 0.005652)
Fit Deviance : 0.24456 (sd 0.030863)
Explained Deviance : 0.15244 (sd 0.030084)
Percent Deviance Explained : 38.41 (sd 7.6612)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.092 (sd 0.0063246)
Confusion Matrix:
observed
predicted 1 0
1 168 253
0 65 4174
AUC : 0.93724 (sd 0.013488)
Percent Correctly Classified : 93.17544 (sd 0.92391)
Sensitivity : 0.7210145 (sd 0.091102)
Specificity : 0.9428526 (sd 0.012033)
Kappa : 0.4807245 (sd 0.047865)
True Skill Statistic : 0.6638671 (sd 0.084308)
Calibration Statistics
Intercept (general calibration) : -0.2873575 (sd 0.30371)
Slope (direction and variation in fit) : 0.7808831 (sd 0.10644)
Testa0b1 (overall reliability of predictors) : 0.1974776 (sd 0.2995)
Testa0|b1(incorrect calibration given correct refinement) : 0.5626288 (sd 0.35114)
Testb1|a (refinement given correct calibration) : 0.1885523 (sd 0.25407)
Total time = 2.42 min
MARS
Random Forests
MARS Model Results
Data:
C:\Withrow\Workspace\Model\mars_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 233
n(abs) = 4427
n covariates considered = 5
total time for model fitting = 0.04min
Settings:
random seed used : 123
mars degree : 1
mars penalty : 2
Summary of Model:
nsubsets gcv rss
bio16 13 100.0 100.0
bio01 12 75.8 76.6
bio02 11 72.0 72.8
di_all_model 8 49.1 50.4
bio15 6 38.9 40.2
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.6321587
NULL Deviance : 0.39703
Fit Deviance : 0.20754
Explained Deviance : 0.18949
Percent Deviance Explained : 47.726
Threshold Methods based on Sens=Spec
Threshold : 0.06
Confusion Matrix:
observed
predicted 1 0
1 204 502
0 29 3925
AUC : 0.9438
Percent Correctly Classified : 88.60515
Sensitivity : 0.8755365
Specificity : 0.8866049
Kappa : 0.3885306
True Skill Statistic : 0.7621414
Calibration Statistics
Intercept (general calibration) : 0.0007413135
Slope (direction and variation in fit) : 1.000751
Testa0b1 (overall reliability of predictors) : 0.9998868
Testa0|b1(incorrect calibration given correct refinement) : 0.9968348
Testb1|a (refinement given correct calibration) : 0.9884184
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.6191279 (sd 0.063331)
NULL Deviance : 0.39701 (sd 0.005652)
Fit Deviance : 0.21553 (sd 0.023887)
Explained Deviance : 0.18148 (sd 0.023783)
Percent Deviance Explained : 45.712 (sd 6.0059)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.053 (sd 0.0048305)
Confusion Matrix:
observed
predicted 1 0
1 202 570
0 31 3857
AUC : 0.9377 (sd 0.015375)
Percent Correctly Classified : 87.10219 (sd 0.94679)
Sensitivity : 0.8668478 (sd 0.062914)
Specificity : 0.8712435 (sd 0.01055)
Kappa : 0.3525133 (sd 0.029477)
True Skill Statistic : 0.7380913 (sd 0.060224)
Calibration Statistics
Intercept (general calibration) : -0.02219644 (sd 0.26816)
Slope (direction and variation in fit) : 0.9867053 (sd 0.1372)
Testa0b1 (overall reliability of predictors) : 0.6276483 (sd 0.24436)
Testa0|b1(incorrect calibration given correct refinement) : 0.5492176 (sd 0.20854)
Testb1|a (refinement given correct calibration) : 0.5187132 (sd 0.22096)
Total time = 0.43 min
Random Forest Modeling Results
Data:
C:\Withrow\Workspace\Model\rf_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 233
n(abs) = 4427
n covariates considered = 5
total time for model fitting = 0.1min
Settings:
random seed used : 19680828
n covariates considered at each split : 5
n trees : 1000
Relative performance of predictors in final model:
0 1 MeanDecreaseAccuracy MeanDecreaseGini
bio16 74.2453 150.5163 118.3171 79.7528
bio02 84.3693 19.7013 88.9577 65.3076
bio15 79.6274 30.3048 87.7276 32.3139
bio01 63.6746 67.1785 75.5653 53.2587
di_all_model 29.4376 48.9342 45.8017 49.2461
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.6065517
NULL Deviance : 0.39703
Fit Deviance : 0.21751
Explained Deviance : 0.17952
Percent Deviance Explained : 45.217
Threshold Methods based on Sens=Spec
Threshold : 0.04
Confusion Matrix:
observed
predicted 1 0
1 205 585
0 28 3842
AUC : 0.9377
Percent Correctly Classified : 86.84549
Sensitivity : 0.8798283
Specificity : 0.8678563
Kappa : 0.3506356
True Skill Statistic : 0.7476847
Calibration Statistics
Intercept (general calibration) : -0.2849504
Slope (direction and variation in fit) : 0.8769871
Testa0b1 (overall reliability of predictors) : 0.006218378
Testa0|b1(incorrect calibration given correct refinement) : 0.1618617
Testb1|a (refinement given correct calibration) : 0.0041804
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.6142666 (sd 0.04331)
NULL Deviance : 0.39701 (sd 0.005652)
Fit Deviance : 0.20856 (sd 0.016832)
Explained Deviance : 0.18845 (sd 0.018425)
Percent Deviance Explained : 47.451 (sd 4.4064)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.4665 (sd 0.017646)
Confusion Matrix:
observed
predicted 1 0
1 104 64
0 129 4363
AUC : 0.9513 (sd 0.011837)
Percent Correctly Classified : 95.85785 (sd 0.72644)
Sensitivity : 0.4461957 (sd 0.10303)
Specificity : 0.9855423 (sd 0.0052398)
Kappa : 0.494351 (sd 0.10186)
True Skill Statistic : 0.431738 (sd 0.10348)
Calibration Statistics
Intercept (general calibration) : -0.1257495 (sd 0.2799)
Slope (direction and variation in fit) : 0.9275221 (sd 0.09161)
Testa0b1 (overall reliability of predictors) : 0.6054353 (sd 0.27083)
Testa0|b1(incorrect calibration given correct refinement) : 0.5944788 (sd 0.28381)
Testb1|a (refinement given correct calibration) : 0.6006185 (sd 0.3145)
Total time = 1.3 min