General Linear Models
Boosted Regression Trees
Multivariate Regression Splines
Random Forests
Current Conditions According to Model
Predictions - RCP45, 2050
Predictions - RCP45, 2070
Predictions - RCP85, 2050
Predictions - RCP85, 2070
Ensemble Present Model Average
Correlation Matrix
Model Fit Details
General Linear Models
Boosted Regression Trees
Generalized Linear Model Results
Data:
C:\Withrow\Workspace\Model\glm_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 107
n(abs) = 2201
n covariates considered = 6
total time for model fitting = 0.25min
Settings:
model family : binomial
simplification method : AIC
Results:
number covariates in final model : 18
Call:
glm(formula = response ~ I(bio10^2) + bio10 + bio03 + I(bio03^2) +
bio15 + bio17 + I(bio17^2) + I(bio04^2) + bio04 + bio10:bio17 +
bio10:bio04 + bio10:bio15 + bio03:bio17 + bio10:bio03 + bio17:bio04 +
bio15:bio17 + bio03:bio04 + bio03:bio15, family = model.family,
data = dat, weights = weight, na.action = "na.exclude")
Deviance Residuals:
Min 1Q Median 3Q Max
-1.94596 -0.08669 -0.00661 -0.00002 3.07124
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.854e+02 3.947e+02 -1.990 0.046601 *
I(bio10^2) -8.678e-03 1.413e-03 -6.140 8.26e-10 ***
bio10 -5.128e+00 1.297e+00 -3.955 7.65e-05 ***
bio03 3.868e+01 1.301e+01 2.974 0.002942 **
I(bio03^2) -3.484e-01 1.017e-01 -3.425 0.000615 ***
bio15 1.330e+00 1.448e+00 0.919 0.358292
bio17 -4.329e+00 9.808e-01 -4.414 1.01e-05 ***
I(bio17^2) -3.746e-03 7.921e-04 -4.729 2.26e-06 ***
I(bio04^2) -7.616e-06 2.146e-06 -3.549 0.000387 ***
bio04 1.249e-01 5.855e-02 2.134 0.032872 *
bio10:bio17 -8.122e-03 1.702e-03 -4.771 1.83e-06 ***
bio10:bio04 5.158e-04 1.004e-04 5.137 2.80e-07 ***
bio10:bio15 1.661e-02 3.181e-03 5.221 1.78e-07 ***
bio03:bio17 6.728e-02 1.610e-02 4.179 2.93e-05 ***
bio10:bio03 8.624e-02 2.212e-02 3.898 9.69e-05 ***
bio17:bio04 3.725e-04 8.036e-05 4.635 3.57e-06 ***
bio15:bio17 1.217e-02 3.942e-03 3.087 0.002019 **
bio03:bio04 -2.942e-03 1.021e-03 -2.881 0.003967 **
bio03:bio15 -9.539e-02 3.529e-02 -2.703 0.006865 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 866.22 on 2307 degrees of freedom
Residual deviance: 392.87 on 2289 degrees of freedom
AIC: 430.87
Number of Fisher Scoring iterations: 13
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.6631697
NULL Deviance : 0.37531
Fit Deviance : 0.17022
Explained Deviance : 0.20509
Percent Deviance Explained : 54.645
Threshold Methods based on Sens=Spec
Threshold : 0.07
Confusion Matrix:
observed
predicted 1 0
1 97 216
0 10 1985
AUC : 0.9664
Percent Correctly Classified : 90.20797
Sensitivity : 0.9065421
Specificity : 0.9018628
Kappa : 0.4219629
True Skill Statistic : 0.8084048
Calibration Statistics
Intercept (general calibration) : 0.0009203704
Slope (direction and variation in fit) : 1.001178
Testa0b1 (overall reliability of predictors) : 0.9999055
Testa0|b1(incorrect calibration given correct refinement) : 0.9976111
Testb1|a (refinement given correct calibration) : 0.9892951
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.6102008 (sd 0.10901)
NULL Deviance : 0.37521 (sd 0.012364)
Fit Deviance : 0.19524 (sd 0.045225)
Explained Deviance : 0.17997 (sd 0.04489)
Percent Deviance Explained : 47.972 (sd 11.963)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.07 (sd 0.004714)
Confusion Matrix:
observed
predicted 1 0
1 92 221
0 15 1980
AUC : 0.95492 (sd 0.020735)
Percent Correctly Classified : 89.7764 (sd 2.5132)
Sensitivity : 0.8609091 (sd 0.12362)
Specificity : 0.8995928 (sd 0.027637)
Kappa : 0.4026894 (sd 0.075746)
True Skill Statistic : 0.7605019 (sd 0.11792)
Calibration Statistics
Intercept (general calibration) : -0.02730155 (sd 0.53802)
Slope (direction and variation in fit) : 1.072086 (sd 0.65418)
Testa0b1 (overall reliability of predictors) : 0.3982633 (sd 0.32592)
Testa0|b1(incorrect calibration given correct refinement) : 0.7324866 (sd 0.20958)
Testb1|a (refinement given correct calibration) : 0.2368648 (sd 0.22529)
Total time = 2.07 min
Boosted Regression Tree Modeling Results
Data:
C:\Withrow\Workspace\Model\brt_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 107
n(abs) = 2201
n covariates considered = 6
total time for model fitting = 0.17min
Settings:
random seed used : 19680828
tree complexity : 5
learning rate : 0.0364
n(trees) : 300
model simplification : cross-validation
n folds : 3
n covariates in final model : 3
Relative influence of predictors in final model:
Var rel.inf
bio10 36.30852
bio17 32.78556
bio04 30.90592
Important interactions in final model:
v1 name1 v2 name2
3 bio17 2 bio10
2 bio10 1 bio04
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.7910162
NULL Deviance : 0.37531
Fit Deviance : 0.12674
Explained Deviance : 0.24857
Percent Deviance Explained : 66.231
Threshold Methods based on Sens=Spec
Threshold : 0.1
Confusion Matrix:
observed
predicted 1 0
1 101 127
0 6 2074
AUC : 0.9877
Percent Correctly Classified : 94.23744
Sensitivity : 0.9439252
Specificity : 0.942299
Kappa : 0.5762437
True Skill Statistic : 0.8862242
Calibration Statistics
Intercept (general calibration) : 0.9159794
Slope (direction and variation in fit) : 1.72324
Testa0b1 (overall reliability of predictors) : 9.50934e-10
Testa0|b1(incorrect calibration given correct refinement) : 0.9698975
Testb1|a (refinement given correct calibration) : 1.151458e-10
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.4716633 (sd 0.14868)
NULL Deviance : 0.37521 (sd 0.012364)
Fit Deviance : 0.25804 (sd 0.055902)
Explained Deviance : 0.11717 (sd 0.057029)
Percent Deviance Explained : 31.167 (sd 15.019)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.078 (sd 0.03084)
Confusion Matrix:
observed
predicted 1 0
1 77 220
0 30 1981
AUC : 0.89863 (sd 0.068767)
Percent Correctly Classified : 89.16582 (sd 3.1202)
Sensitivity : 0.7236364 (sd 0.13974)
Specificity : 0.9000494 (sd 0.034203)
Kappa : 0.3472521 (sd 0.091085)
True Skill Statistic : 0.6236857 (sd 0.1335)
Calibration Statistics
Intercept (general calibration) : -0.05057701 (sd 0.86714)
Slope (direction and variation in fit) : 0.9627926 (sd 0.37778)
Testa0b1 (overall reliability of predictors) : 0.3508631 (sd 0.29143)
Testa0|b1(incorrect calibration given correct refinement) : 0.6377932 (sd 0.23535)
Testb1|a (refinement given correct calibration) : 0.2160722 (sd 0.19153)
Total time = 1.73 min
MARS
Random Forests
MARS Model Results
Data:
C:\Withrow\Workspace\Model\mars_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 107
n(abs) = 2201
n covariates considered = 6
total time for model fitting = 0.03min
Settings:
random seed used : 123
mars degree : 1
mars penalty : 2
Summary of Model:
nsubsets gcv rss
bio10 13 100.0 100.0
bio03 11 76.5 78.1
bio17 10 57.8 61.5
bio15 9 55.2 58.7
bio04 8 50.2 53.7
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.5404035
NULL Deviance : 0.37531
Fit Deviance : 0.21602
Explained Deviance : 0.1593
Percent Deviance Explained : 42.444
Threshold Methods based on Sens=Spec
Threshold : 0.06
Confusion Matrix:
observed
predicted 1 0
1 92 312
0 15 1889
AUC : 0.9397
Percent Correctly Classified : 85.83189
Sensitivity : 0.8598131
Specificity : 0.8582463
Kappa : 0.3094575
True Skill Statistic : 0.7180593
Calibration Statistics
Intercept (general calibration) : 0.001087479
Slope (direction and variation in fit) : 1.00094
Testa0b1 (overall reliability of predictors) : 0.9999369
Testa0|b1(incorrect calibration given correct refinement) : 0.9978453
Testb1|a (refinement given correct calibration) : 0.9912993
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.4943255 (sd 0.13764)
NULL Deviance : 0.37521 (sd 0.012364)
Fit Deviance : 0.23229 (sd 0.043588)
Explained Deviance : 0.14292 (sd 0.044417)
Percent Deviance Explained : 38.053 (sd 11.71)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.06 (sd 0.0066667)
Confusion Matrix:
observed
predicted 1 0
1 89 330
0 18 1871
AUC : 0.92636 (sd 0.034254)
Percent Correctly Classified : 84.92415 (sd 2.8399)
Sensitivity : 0.8354545 (sd 0.14674)
Specificity : 0.850072 (sd 0.025144)
Kappa : 0.2907202 (sd 0.081185)
True Skill Statistic : 0.6855265 (sd 0.16225)
Calibration Statistics
Intercept (general calibration) : -0.1043819 (sd 0.51311)
Slope (direction and variation in fit) : 0.986667 (sd 0.38236)
Testa0b1 (overall reliability of predictors) : 0.5294701 (sd 0.29365)
Testa0|b1(incorrect calibration given correct refinement) : 0.8191362 (sd 0.1644)
Testb1|a (refinement given correct calibration) : 0.3414911 (sd 0.26221)
Total time = 0.3 min
Random Forest Modeling Results
Data:
C:\Withrow\Workspace\Model\rf_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 107
n(abs) = 2201
n covariates considered = 6
total time for model fitting = 0.07min
Settings:
random seed used : 19680828
n covariates considered at each split : 1
n trees : 1000
Relative performance of predictors in final model:
0 1 MeanDecreaseAccuracy MeanDecreaseGini
bio03 41.0164 22.9883 45.0781 13.5744
bio10 27.0290 51.4809 42.3034 25.1181
bio17 29.6278 44.4631 39.1323 22.6135
bio15 26.4065 31.0258 34.4718 16.4590
bio04 25.3663 26.8861 32.7169 21.9083
di_all_model 29.7983 4.5706 30.8369 13.0811
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.5794988
NULL Deviance : 0.37531
Fit Deviance : 0.21549
Explained Deviance : 0.15983
Percent Deviance Explained : 42.585
Threshold Methods based on Sens=Spec
Threshold : 0.06
Confusion Matrix:
observed
predicted 1 0
1 93 267
0 14 1934
AUC : 0.9321
Percent Correctly Classified : 87.82496
Sensitivity : 0.8691589
Specificity : 0.8786915
Kappa : 0.3519678
True Skill Statistic : 0.7478504
Calibration Statistics
Intercept (general calibration) : 0.3338055
Slope (direction and variation in fit) : 1.117483
Testa0b1 (overall reliability of predictors) : 0.1886325
Testa0|b1(incorrect calibration given correct refinement) : 0.3142768
Testb1|a (refinement given correct calibration) : 0.12745
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.5666863 (sd 0.12496)
NULL Deviance : 0.37521 (sd 0.012364)
Fit Deviance : 0.21031 (sd 0.036035)
Explained Deviance : 0.1649 (sd 0.038272)
Percent Deviance Explained : 43.889 (sd 9.9524)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.466 (sd 0.01022)
Confusion Matrix:
observed
predicted 1 0
1 37 22
0 70 2179
AUC : 0.93837 (sd 0.033025)
Percent Correctly Classified : 96.01355 (sd 1.1168)
Sensitivity : 0.3427273 (sd 0.17918)
Specificity : 0.9900041 (sd 0.0059851)
Kappa : 0.4104782 (sd 0.21473)
True Skill Statistic : 0.3327314 (sd 0.18145)
Calibration Statistics
Intercept (general calibration) : 0.01704954 (sd 0.34417)
Slope (direction and variation in fit) : 1.037878 (sd 0.23822)
Testa0b1 (overall reliability of predictors) : 0.6443415 (sd 0.17945)
Testa0|b1(incorrect calibration given correct refinement) : 0.7569441 (sd 0.21961)
Testb1|a (refinement given correct calibration) : 0.4543546 (sd 0.20255)
Total time = 0.79 min