General Linear Models
Boosted Regression Trees
Multivariate Regression Splines
Random Forests
Current Conditions According to Model
Predictions - RCP45, 2050
Predictions - RCP45, 2070
Predictions - RCP85, 2050
Predictions - RCP85, 2070
Ensemble Present Model Average
Correlation Matrix
Model Fit Details
General Linear Models
Boosted Regression Trees
Generalized Linear Model Results
Data:
C:\Withrow\Workspace\Model\glm_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 27
n(abs) = 1998
n covariates considered = 4
total time for model fitting = 0.15min
Settings:
model family : binomial
simplification method : AIC
Results:
number covariates in final model : 6
Call:
glm(formula = response ~ I(bio17^2) + bio17 + bio06 + bio03 +
I(bio03^2) + bio06:bio03, family = model.family, data = dat,
weights = weight, na.action = "na.exclude")
Deviance Residuals:
Min 1Q Median 3Q Max
-0.7297 -0.1184 -0.0123 0.0000 3.4207
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.706e+02 1.711e+02 -2.750 0.00595 **
I(bio17^2) -7.188e-03 1.684e-03 -4.269 1.96e-05 ***
bio17 3.424e-01 8.452e-02 4.051 5.10e-05 ***
bio06 -7.693e-01 3.454e-01 -2.227 0.02592 *
bio03 1.827e+01 6.769e+00 2.699 0.00695 **
I(bio03^2) -1.796e-01 6.694e-02 -2.683 0.00730 **
bio06:bio03 1.473e-02 6.815e-03 2.161 0.03067 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 286.78 on 2024 degrees of freedom
Residual deviance: 198.22 on 2018 degrees of freedom
AIC: 212.22
Number of Fisher Scoring iterations: 14
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.2647685
NULL Deviance : 0.14162
Fit Deviance : 0.097884
Explained Deviance : 0.043737
Percent Deviance Explained : 30.883
Threshold Methods based on Sens=Spec
Threshold : 0.04
Confusion Matrix:
observed
predicted 1 0
1 24 191
0 3 1807
AUC : 0.9315
Percent Correctly Classified : 90.41975
Sensitivity : 0.8888889
Specificity : 0.9044044
Kappa : 0.1788939
True Skill Statistic : 0.7932933
Calibration Statistics
Intercept (general calibration) : 0.008644103
Slope (direction and variation in fit) : 1.003528
Testa0b1 (overall reliability of predictors) : 0.9998039
Testa0|b1(incorrect calibration given correct refinement) : 0.9967358
Testb1|a (refinement given correct calibration) : 0.9845414
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.2317699 (sd 0.089531)
NULL Deviance : 0.14117 (sd 0.020667)
Fit Deviance : 0.10718 (sd 0.024381)
Explained Deviance : 0.033989 (sd 0.019267)
Percent Deviance Explained : 24.085 (sd 14.215)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.035 (sd 0.0052705)
Confusion Matrix:
observed
predicted 1 0
1 21 211
0 6 1787
AUC : 0.90449 (sd 0.057157)
Percent Correctly Classified : 89.27646 (sd 1.9571)
Sensitivity : 0.7833333 (sd 0.19325)
Specificity : 0.8943175 (sd 0.019037)
Kappa : 0.1436885 (sd 0.045206)
True Skill Statistic : 0.6776508 (sd 0.19926)
Calibration Statistics
Intercept (general calibration) : -0.05182028 (sd 1.9152)
Slope (direction and variation in fit) : 1.069103 (sd 0.83036)
Testa0b1 (overall reliability of predictors) : 0.6448076 (sd 0.30704)
Testa0|b1(incorrect calibration given correct refinement) : 0.7981151 (sd 0.14847)
Testb1|a (refinement given correct calibration) : 0.4742144 (sd 0.33924)
Total time = 1.45 min
Boosted Regression Tree Modeling Results
Data:
C:\Withrow\Workspace\Model\brt_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 27
n(abs) = 1998
n covariates considered = 4
total time for model fitting = 0.28min
Settings:
random seed used : 19680828
tree complexity : 5
learning rate : 0.0161
n(trees) : 300
model simplification : cross-validation
n folds : 3
n covariates in final model : 2
Relative influence of predictors in final model:
Var rel.inf
bio17 61.76195
bio06 38.23805
Important interactions in final model:
v1 name1 v2 name2
2 bio17 1 bio06
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.5995383
NULL Deviance : 0.14162
Fit Deviance : 0.064978
Explained Deviance : 0.076643
Percent Deviance Explained : 54.118
Threshold Methods based on Sens=Spec
Threshold : 0.02
Confusion Matrix:
observed
predicted 1 0
1 25 151
0 2 1847
AUC : 0.9874
Percent Correctly Classified : 92.44444
Sensitivity : 0.9259259
Specificity : 0.9244244
Kappa : 0.2284677
True Skill Statistic : 0.8503504
Calibration Statistics
Intercept (general calibration) : 1.39392
Slope (direction and variation in fit) : 1.668521
Testa0b1 (overall reliability of predictors) : 0.0008130722
Testa0|b1(incorrect calibration given correct refinement) : 0.9483714
Testb1|a (refinement given correct calibration) : 0.000162185
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.1072695 (sd 0.065244)
NULL Deviance : 0.14117 (sd 0.020667)
Fit Deviance : 0.12516 (sd 0.024276)
Explained Deviance : 0.016011 (sd 0.017874)
Percent Deviance Explained : 11.194 (sd 12.112)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.041 (sd 0.014491)
Confusion Matrix:
observed
predicted 1 0
1 13 113
0 14 1885
AUC : 0.8731 (sd 0.077218)
Percent Correctly Classified : 93.72543 (sd 2.201)
Sensitivity : 0.4833333 (sd 0.26586)
Specificity : 0.9433918 (sd 0.023065)
Kappa : 0.1544513 (sd 0.089548)
True Skill Statistic : 0.4267251 (sd 0.25882)
Calibration Statistics
Intercept (general calibration) : -0.8957377 (sd 0.69083)
Slope (direction and variation in fit) : 0.7034822 (sd 0.16845)
Testa0b1 (overall reliability of predictors) : 0.5776993 (sd 0.27888)
Testa0|b1(incorrect calibration given correct refinement) : 0.7127872 (sd 0.10568)
Testb1|a (refinement given correct calibration) : 0.4082425 (sd 0.28509)
Total time = 2.97 min
MARS
Random Forests
MARS Model Results
Data:
C:\Withrow\Workspace\Model\mars_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 27
n(abs) = 1998
n covariates considered = 4
total time for model fitting = 0.09min
Settings:
random seed used : 123
mars degree : 1
mars penalty : 2
Summary of Model:
nsubsets gcv rss
bio17 8 100.0 100.0
bio03 5 66.2 70.1
bio06 3 48.9 52.7
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.2528548
NULL Deviance : 0.14162
Fit Deviance : 0.099051
Explained Deviance : 0.04257
Percent Deviance Explained : 30.059
Threshold Methods based on Sens=Spec
Threshold : 0.02
Confusion Matrix:
observed
predicted 1 0
1 24 261
0 3 1737
AUC : 0.9357
Percent Correctly Classified : 86.96296
Sensitivity : 0.8888889
Specificity : 0.8693694
Kappa : 0.1327201
True Skill Statistic : 0.7582583
Calibration Statistics
Intercept (general calibration) : 0.003739103
Slope (direction and variation in fit) : 1.00164
Testa0b1 (overall reliability of predictors) : 0.9999258
Testa0|b1(incorrect calibration given correct refinement) : 0.996696
Testb1|a (refinement given correct calibration) : 0.990858
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.1982072 (sd 0.109)
NULL Deviance : 0.14117 (sd 0.020667)
Fit Deviance : 0.10944 (sd 0.024539)
Explained Deviance : 0.031735 (sd 0.019754)
Percent Deviance Explained : 22.425 (sd 14.42)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.023 (sd 0.0048305)
Confusion Matrix:
observed
predicted 1 0
1 21 235
0 6 1763
AUC : 0.89973 (sd 0.075725)
Percent Correctly Classified : 88.09101 (sd 2.2453)
Sensitivity : 0.7666667 (sd 0.26294)
Specificity : 0.8823123 (sd 0.024701)
Kappa : 0.1266794 (sd 0.052968)
True Skill Statistic : 0.648979 (sd 0.25123)
Calibration Statistics
Intercept (general calibration) : -0.4158698 (sd 1.1691)
Slope (direction and variation in fit) : 0.8981391 (sd 0.42058)
Testa0b1 (overall reliability of predictors) : 0.7101204 (sd 0.29739)
Testa0|b1(incorrect calibration given correct refinement) : 0.8018684 (sd 0.16563)
Testb1|a (refinement given correct calibration) : 0.5365264 (sd 0.31721)
Total time = 0.56 min
Random Forest Modeling Results
Data:
C:\Withrow\Workspace\Model\rf_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 27
n(abs) = 1998
n covariates considered = 4
total time for model fitting = 0.12min
Settings:
random seed used : 19680828
n covariates considered at each split : 1
n trees : 1000
Relative performance of predictors in final model:
0 1 MeanDecreaseAccuracy MeanDecreaseGini
bio17 9.5858 15.4889 11.8454 8.1924
bio06 9.1987 13.8891 11.3356 7.9464
bio03 2.9061 9.8395 4.9327 3.9501
di_all_model 0.7223 13.5104 4.2628 5.6753
Model Failed