General Linear Models
Boosted Regression Trees
Multivariate Regression Splines
Random Forests
Current Conditions According to Model
Predictions - RCP45, 2050
Predictions - RCP45, 2070
Predictions - RCP85, 2050
Predictions - RCP85, 2070
Ensemble Present Model Average
Correlation Matrix
Model Fit Details
General Linear Models
Boosted Regression Trees
Generalized Linear Model Results
Data:
C:\Withrow\Workspace\Model\glm_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 46
n(abs) = 1410
n covariates considered = 5
total time for model fitting = 0.06min
Settings:
model family : binomial
simplification method : AIC
Results:
number covariates in final model : 6
Call:
glm(formula = response ~ bio06 + bio12 + I(bio06^2) + I(bio12^2) +
I(di_all_model^2) + I(bio04^2), family = model.family, data = dat,
weights = weight, na.action = "na.exclude")
Deviance Residuals:
Min 1Q Median 3Q Max
-1.760 -0.007 0.000 0.000 3.511
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.006e+01 8.459e+00 -3.554 0.00038 ***
bio06 -5.095e-01 1.078e-01 -4.725 2.30e-06 ***
bio12 2.737e-02 1.244e-02 2.200 0.02780 *
I(bio06^2) -4.119e-03 9.906e-04 -4.158 3.21e-05 ***
I(bio12^2) -9.986e-06 5.252e-06 -1.901 0.05727 .
I(di_all_model^2) -2.197e-03 1.023e-03 -2.148 0.03169 *
I(bio04^2) -8.847e-08 5.607e-08 -1.578 0.11461
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 408.37 on 1455 degrees of freedom
Residual deviance: 149.16 on 1449 degrees of freedom
AIC: 163.16
Number of Fisher Scoring iterations: 12
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.7103134
NULL Deviance : 0.28048
Fit Deviance : 0.10245
Explained Deviance : 0.17803
Percent Deviance Explained : 63.474
Threshold Methods based on Sens=Spec
Threshold : 0.05
Confusion Matrix:
observed
predicted 1 0
1 44 85
0 2 1325
AUC : 0.9844
Percent Correctly Classified : 94.02473
Sensitivity : 0.9565217
Specificity : 0.9397163
Kappa : 0.4785701
True Skill Statistic : 0.8962381
Calibration Statistics
Intercept (general calibration) : 0.001465382
Slope (direction and variation in fit) : 1.002638
Testa0b1 (overall reliability of predictors) : 0.9998241
Testa0|b1(incorrect calibration given correct refinement) : 0.9975949
Testb1|a (refinement given correct calibration) : 0.9852306
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.6541676 (sd 0.16957)
NULL Deviance : 0.28003 (sd 0.023422)
Fit Deviance : 0.12121 (sd 0.056769)
Explained Deviance : 0.15882 (sd 0.049309)
Percent Deviance Explained : 57.224 (sd 18.086)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.061 (sd 0.0073786)
Confusion Matrix:
observed
predicted 1 0
1 42 81
0 4 1329
AUC : 0.9802 (sd 0.015302)
Percent Correctly Classified : 94.1647 (sd 1.2104)
Sensitivity : 0.92 (sd 0.13984)
Specificity : 0.942547 (sd 0.011843)
Kappa : 0.4758248 (sd 0.068003)
True Skill Statistic : 0.862547 (sd 0.13982)
Calibration Statistics
Intercept (general calibration) : -2.635555 (sd 8.3954)
Slope (direction and variation in fit) : 13.60862 (sd 38.962)
Testa0b1 (overall reliability of predictors) : 0.4123472 (sd 0.30076)
Testa0|b1(incorrect calibration given correct refinement) : 0.662276 (sd 0.24844)
Testb1|a (refinement given correct calibration) : 0.3372489 (sd 0.31969)
Total time = 0.5 min
Boosted Regression Tree Modeling Results
Data:
C:\Withrow\Workspace\Model\brt_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 46
n(abs) = 1410
n covariates considered = 5
total time for model fitting = 0.15min
Settings:
random seed used : 19680828
tree complexity : 4
learning rate : 0.0077
n(trees) : 600
model simplification : cross-validation
n folds : 3
n covariates in final model : 2
Relative influence of predictors in final model:
Var rel.inf
bio06 53.89536
bio12 46.10464
Important interactions in final model:
v1 name1 v2 name2
2 bio12 1 bio06
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.809054
NULL Deviance : 0.28048
Fit Deviance : 0.073196
Explained Deviance : 0.20728
Percent Deviance Explained : 73.903
Threshold Methods based on Sens=Spec
Threshold : 0.08
Confusion Matrix:
observed
predicted 1 0
1 44 56
0 2 1354
AUC : 0.9938
Percent Correctly Classified : 96.01648
Sensitivity : 0.9565217
Specificity : 0.9602837
Kappa : 0.5847691
True Skill Statistic : 0.9168054
Calibration Statistics
Intercept (general calibration) : 0.4632328
Slope (direction and variation in fit) : 1.55685
Testa0b1 (overall reliability of predictors) : 0.00998694
Testa0|b1(incorrect calibration given correct refinement) : 0.9945472
Testb1|a (refinement given correct calibration) : 0.002403147
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.6412284 (sd 0.13713)
NULL Deviance : 0.28003 (sd 0.023422)
Fit Deviance : 0.12043 (sd 0.038243)
Explained Deviance : 0.1596 (sd 0.034218)
Percent Deviance Explained : 57.212 (sd 12.571)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.083 (sd 0.018738)
Confusion Matrix:
observed
predicted 1 0
1 42 59
0 4 1351
AUC : 0.98198 (sd 0.0095773)
Percent Correctly Classified : 95.67442 (sd 1.0182)
Sensitivity : 0.92 (sd 0.16865)
Specificity : 0.9581451 (sd 0.010854)
Kappa : 0.5528657 (sd 0.079856)
True Skill Statistic : 0.8781451 (sd 0.16553)
Calibration Statistics
Intercept (general calibration) : 0.1228843 (sd 0.60562)
Slope (direction and variation in fit) : 1.253544 (sd 0.41616)
Testa0b1 (overall reliability of predictors) : 0.6575434 (sd 0.25426)
Testa0|b1(incorrect calibration given correct refinement) : 0.6619458 (sd 0.20972)
Testb1|a (refinement given correct calibration) : 0.5225266 (sd 0.26712)
Total time = 1.5 min
MARS
Random Forests
MARS Model Results
Data:
C:\Withrow\Workspace\Model\mars_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 46
n(abs) = 1410
n covariates considered = 5
total time for model fitting = 0.04min
Settings:
random seed used : 123
mars degree : 1
mars penalty : 2
Summary of Model:
nsubsets gcv rss
bio06 11 100.0 100.0
di_all_model 9 50.7 55.4
bio12 7 38.8 44.0
bio02 7 36.1 41.8
bio04 3 20.1 24.6
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.6834515
NULL Deviance : 0.28048
Fit Deviance : 0.10832
Explained Deviance : 0.17215
Percent Deviance Explained : 61.378
Threshold Methods based on Sens=Spec
Threshold : 0.08
Confusion Matrix:
observed
predicted 1 0
1 44 76
0 2 1334
AUC : 0.9828
Percent Correctly Classified : 94.64286
Sensitivity : 0.9565217
Specificity : 0.9460993
Kappa : 0.5076304
True Skill Statistic : 0.902621
Calibration Statistics
Intercept (general calibration) : 0.001704407
Slope (direction and variation in fit) : 1.002399
Testa0b1 (overall reliability of predictors) : 0.9998379
Testa0|b1(incorrect calibration given correct refinement) : 0.9976302
Testb1|a (refinement given correct calibration) : 0.9858294
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.619751 (sd 0.19042)
NULL Deviance : 0.28003 (sd 0.023422)
Fit Deviance : 0.16829 (sd 0.177)
Explained Deviance : 0.11174 (sd 0.16931)
Percent Deviance Explained : 41.421 (sd 58.331)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.056 (sd 0.012649)
Confusion Matrix:
observed
predicted 1 0
1 40 93
0 6 1317
AUC : 0.96244 (sd 0.054766)
Percent Correctly Classified : 93.20534 (sd 2.4398)
Sensitivity : 0.88 (sd 0.13984)
Specificity : 0.9340365 (sd 0.022964)
Kappa : 0.4341868 (sd 0.10465)
True Skill Statistic : 0.8140365 (sd 0.15052)
Calibration Statistics
Intercept (general calibration) : -1.609245 (sd 4.2196)
Slope (direction and variation in fit) : 22.07845 (sd 66.636)
Testa0b1 (overall reliability of predictors) : 0.4860174 (sd 0.32201)
Testa0|b1(incorrect calibration given correct refinement) : 0.6825791 (sd 0.18503)
Testb1|a (refinement given correct calibration) : 0.3282137 (sd 0.32611)
Total time = 0.24 min
Random Forest Modeling Results
Data:
C:\Withrow\Workspace\Model\rf_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 46
n(abs) = 1410
n covariates considered = 5
total time for model fitting = 0.05min
Settings:
random seed used : 19680828
n covariates considered at each split : 3
n trees : 1000
Relative performance of predictors in final model:
0 1 MeanDecreaseAccuracy MeanDecreaseGini
bio06 7.1729 104.1352 45.9991 22.0283
bio02 -9.0102 26.4508 15.5023 8.5699
bio12 -15.2046 37.4929 13.7845 10.2334
bio04 1.0123 21.5680 13.3507 11.2111
di_all_model -18.7026 32.6791 12.5529 4.3259
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.6515255
NULL Deviance : 0.28048
Fit Deviance : 0.12324
Explained Deviance : 0.15723
Percent Deviance Explained : 56.06
Threshold Methods based on Sens=Spec
Threshold : 0.03
Confusion Matrix:
observed
predicted 1 0
1 43 92
0 3 1318
AUC : 0.9601
Percent Correctly Classified : 93.47527
Sensitivity : 0.9347826
Specificity : 0.9347518
Kappa : 0.4491789
True Skill Statistic : 0.8695344
Calibration Statistics
Intercept (general calibration) : -0.3673793
Slope (direction and variation in fit) : 0.9333836
Testa0b1 (overall reliability of predictors) : 0.2759684
Testa0|b1(incorrect calibration given correct refinement) : 0.1520537
Testb1|a (refinement given correct calibration) : 0.46939
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.6633857 (sd 0.14909)
NULL Deviance : 0.28003 (sd 0.023422)
Fit Deviance : 0.12342 (sd 0.056307)
Explained Deviance : 0.15661 (sd 0.04784)
Percent Deviance Explained : 56.491 (sd 17.982)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.473 (sd 0.016193)
Confusion Matrix:
observed
predicted 1 0
1 23 11
0 23 1399
AUC : 0.96027 (sd 0.05314)
Percent Correctly Classified : 97.66411 (sd 1.0819)
Sensitivity : 0.51 (sd 0.21705)
Specificity : 0.9921935 (sd 0.0078045)
Kappa : 0.557391 (sd 0.20438)
True Skill Statistic : 0.5021935 (sd 0.21722)
Calibration Statistics
Intercept (general calibration) : 0.1497536 (sd 0.8748)
Slope (direction and variation in fit) : 1.440079 (sd 0.92691)
Testa0b1 (overall reliability of predictors) : 0.5209303 (sd 0.26563)
Testa0|b1(incorrect calibration given correct refinement) : 0.6206368 (sd 0.1945)
Testb1|a (refinement given correct calibration) : 0.4286169 (sd 0.30776)
Total time = 0.38 min