General Linear Models
Boosted Regression Trees
Multivariate Regression Splines
Random Forests
Current Conditions According to Model
Predictions - RCP45, 2050
Predictions - RCP45, 2070
Predictions - RCP85, 2050
Predictions - RCP85, 2070
Ensemble Present Model Average
Correlation Matrix
Model Fit Details
General Linear Models
Boosted Regression Trees
Generalized Linear Model Results
n(pres) = 374
n(abs) = 4636
n covariates considered = 9
total time for model fitting = 5.7min
Settings:
model family : binomial
simplification method : AIC
Results:
number covariates in final model : 38
Call:
glm(formula = response ~ I(bio05^2) + bio05 + bio15 + bio08 +
bio02 + I(bio02^2) + I(bio18^2) + bio12 + I(bio12^2) + bio18 +
I(bio15^2) + bio09 + I(bio09^2) + I(bio08^2) + di_all_model +
I(di_all_model^2) + bio15:bio08 + bio08:bio02 + bio15:bio12 +
bio08:bio12 + bio05:bio12 + bio05:bio15 + bio12:bio18 + bio02:bio18 +
bio05:bio02 + bio02:bio12 + bio15:bio18 + bio05:bio18 + bio08:bio18 +
bio18:bio09 + bio02:di_all_model + bio08:di_all_model + bio18:di_all_model +
bio15:di_all_model + bio05:bio09 + bio02:bio09 + bio05:bio08 +
bio12:di_all_model, family = model.family, data = dat, weights = weight,
na.action = "na.exclude")
Deviance Residuals:
Min 1Q Median 3Q Max
-2.9081 -0.1226 -0.0143 -0.0002 3.2732
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.920e+01 1.791e+01 -5.539 3.04e-08 ***
I(bio05^2) -1.827e-03 2.604e-04 -7.015 2.29e-12 ***
bio05 4.553e-01 1.005e-01 4.528 5.95e-06 ***
bio15 4.342e-01 1.065e-01 4.078 4.54e-05 ***
bio08 8.172e-02 3.879e-02 2.107 0.035140 *
bio02 3.767e-01 1.468e-01 2.565 0.010304 *
I(bio02^2) -3.810e-03 6.695e-04 -5.691 1.26e-08 ***
I(bio18^2) 3.147e-04 9.061e-05 3.473 0.000515 ***
bio12 2.182e-02 7.992e-03 2.730 0.006332 **
I(bio12^2) -3.878e-06 1.787e-06 -2.171 0.029959 *
bio18 -4.286e-02 6.875e-02 -0.623 0.533048
I(bio15^2) -1.230e-03 4.438e-04 -2.771 0.005584 **
bio09 -9.847e-03 4.325e-02 -0.228 0.819899
I(bio09^2) -2.292e-04 5.080e-05 -4.512 6.42e-06 ***
I(bio08^2) -1.020e-04 4.348e-05 -2.345 0.019037 *
di_all_model -2.022e-01 9.458e-02 -2.138 0.032498 *
I(di_all_model^2) -3.791e-04 2.273e-04 -1.668 0.095339 .
bio15:bio08 -3.683e-04 1.931e-04 -1.907 0.056537 .
bio08:bio02 -5.729e-04 1.855e-04 -3.089 0.002006 **
bio15:bio12 -1.310e-04 6.338e-05 -2.067 0.038688 *
bio08:bio12 -1.085e-04 1.617e-05 -6.712 1.92e-11 ***
bio05:bio12 1.280e-04 2.314e-05 5.532 3.16e-08 ***
bio05:bio15 -9.084e-04 3.678e-04 -2.470 0.013510 *
bio12:bio18 -1.095e-04 2.456e-05 -4.457 8.33e-06 ***
bio02:bio18 1.449e-03 2.816e-04 5.144 2.69e-07 ***
bio05:bio02 3.147e-03 7.233e-04 4.351 1.35e-05 ***
bio02:bio12 -1.571e-04 4.126e-05 -3.808 0.000140 ***
bio15:bio18 -8.559e-04 2.294e-04 -3.731 0.000191 ***
bio05:bio18 -7.813e-04 2.545e-04 -3.069 0.002145 **
bio08:bio18 3.450e-04 1.073e-04 3.215 0.001305 **
bio18:bio09 1.700e-04 5.876e-05 2.893 0.003822 **
bio02:di_all_model 1.114e-03 5.661e-04 1.967 0.049163 *
bio08:di_all_model -4.773e-04 1.295e-04 -3.686 0.000227 ***
bio18:di_all_model 3.943e-04 1.547e-04 2.549 0.010792 *
bio15:di_all_model 1.278e-03 4.498e-04 2.842 0.004482 **
bio05:bio09 4.817e-04 1.672e-04 2.881 0.003963 **
bio02:bio09 -6.912e-04 2.793e-04 -2.475 0.013340 *
bio05:bio08 1.817e-04 1.212e-04 1.499 0.133834
bio12:di_all_model -6.186e-05 3.077e-05 -2.010 0.044396 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2660.37 on 5009 degrees of freedom
Residual deviance: 989.27 on 4971 degrees of freedom
AIC: 1067.3
Number of Fisher Scoring iterations: 10
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.753489
NULL Deviance : 0.53101
Fit Deviance : 0.19746
Explained Deviance : 0.33355
Percent Deviance Explained : 62.814
Threshold Methods based on Sens=Spec
Threshold : 0.11
Confusion Matrix:
observed
predicted 1 0
1 342 368
0 32 4268
AUC : 0.9748
Percent Correctly Classified : 92.01597
Sensitivity : 0.9144385
Specificity : 0.9206212
Kappa : 0.5910004
True Skill Statistic : 0.8350597
Calibration Statistics
Intercept (general calibration) : 0.0003561888
Slope (direction and variation in fit) : 1.000683
Testa0b1 (overall reliability of predictors) : 0.9998936
Testa0|b1(incorrect calibration given correct refinement) : 0.9966926
Testb1|a (refinement given correct calibration) : 0.9888378
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.7258847 (sd 0.047021)
NULL Deviance : 0.531 (sd 0.0049635)
Fit Deviance : 0.22326 (sd 0.035157)
Explained Deviance : 0.30774 (sd 0.03471)
Percent Deviance Explained : 57.961 (sd 6.5564)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.103 (sd 0.0048305)
Confusion Matrix:
observed
predicted 1 0
1 330 412
0 44 4224
AUC : 0.96584 (sd 0.011801)
Percent Correctly Classified : 90.89766 (sd 1.5083)
Sensitivity : 0.8825036 (sd 0.033353)
Specificity : 0.9111337 (sd 0.017004)
Kappa : 0.5489875 (sd 0.047837)
True Skill Statistic : 0.7936372 (sd 0.032104)
Calibration Statistics
Intercept (general calibration) : -0.08111887 (sd 0.29113)
Slope (direction and variation in fit) : 0.9163103 (sd 0.12839)
Testa0b1 (overall reliability of predictors) : 0.4292463 (sd 0.30007)
Testa0|b1(incorrect calibration given correct refinement) : 0.4055091 (sd 0.22577)
Testb1|a (refinement given correct calibration) : 0.5723386 (sd 0.41606)
Total time = 48.91 min
Boosted Regression Tree Modeling Results
Data:
C:\Withrow\Workspace\Model\brt_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 374
n(abs) = 4636
n covariates considered = 9
total time for model fitting = 0.73min
Settings:
random seed used : 19680828
tree complexity : 9
learning rate : 0.0738
n(trees) : 300
model simplification : cross-validation
n folds : 3
n covariates in final model : 5
Relative influence of predictors in final model:
Var rel.inf
bio12 27.91475
bio08 23.23542
bio05 18.26510
bio04 15.66607
bio15 14.91866
Important interactions in final model:
v1 name1 v2 name2
3 bio08 2 bio05
4 bio12 2 bio05
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.9440413
NULL Deviance : 0.53101
Fit Deviance : 0.071447
Explained Deviance : 0.45956
Percent Deviance Explained : 86.545
Threshold Methods based on Sens=Spec
Threshold : 0.23
Confusion Matrix:
observed
predicted 1 0
1 369 74
0 5 4562
AUC : 0.9991
Percent Correctly Classified : 98.42315
Sensitivity : 0.986631
Specificity : 0.984038
Kappa : 0.8947872
True Skill Statistic : 0.970669
Calibration Statistics
Intercept (general calibration) : 0.936978
Slope (direction and variation in fit) : 2.708824
Testa0b1 (overall reliability of predictors) : 0
Testa0|b1(incorrect calibration given correct refinement) : 0.9719894
Testb1|a (refinement given correct calibration) : 0
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.713849 (sd 0.072171)
NULL Deviance : 0.531 (sd 0.0049635)
Fit Deviance : 0.23492 (sd 0.056383)
Explained Deviance : 0.29608 (sd 0.056962)
Percent Deviance Explained : 55.749 (sd 10.698)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.226 (sd 0.016465)
Confusion Matrix:
observed
predicted 1 0
1 291 180
0 83 4456
AUC : 0.96821 (sd 0.015229)
Percent Correctly Classified : 94.75022 (sd 0.98341)
Sensitivity : 0.7783784 (sd 0.069545)
Specificity : 0.961174 (sd 0.01089)
Kappa : 0.6615237 (sd 0.052557)
True Skill Statistic : 0.7395524 (sd 0.067205)
Calibration Statistics
Intercept (general calibration) : -0.07511296 (sd 0.36254)
Slope (direction and variation in fit) : 0.8283396 (sd 0.13247)
Testa0b1 (overall reliability of predictors) : 0.2594719 (sd 0.33354)
Testa0|b1(incorrect calibration given correct refinement) : 0.4020512 (sd 0.28796)
Testb1|a (refinement given correct calibration) : 0.3345779 (sd 0.35705)
Total time = 13.83 min
MARS
Random Forests
MARS Model Results
Data:
C:\Withrow\Workspace\Model\mars_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 374
n(abs) = 4636
n covariates considered = 9
total time for model fitting = 0.1min
Settings:
random seed used : 123
mars degree : 1
mars penalty : 2
Summary of Model:
nsubsets gcv rss
bio12 15 100.0 100.0
bio15 12 64.8 65.4
bio04 11 60.4 60.9
bio05 10 57.6 58.1
bio02 5 24.2 25.2
bio18 4 20.8 21.8
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.7070328
NULL Deviance : 0.53101
Fit Deviance : 0.23329
Explained Deviance : 0.29772
Percent Deviance Explained : 56.066
Threshold Methods based on Sens=Spec
Threshold : 0.09
Confusion Matrix:
observed
predicted 1 0
1 328 533
0 46 4103
AUC : 0.9617
Percent Correctly Classified : 88.44311
Sensitivity : 0.8770053
Specificity : 0.8850302
Kappa : 0.4767055
True Skill Statistic : 0.7620355
Calibration Statistics
Intercept (general calibration) : 0.0003802926
Slope (direction and variation in fit) : 1.000582
Testa0b1 (overall reliability of predictors) : 0.999915
Testa0|b1(incorrect calibration given correct refinement) : 0.996948
Testb1|a (refinement given correct calibration) : 0.9900516
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.6892213 (sd 0.070387)
NULL Deviance : 0.531 (sd 0.0049635)
Fit Deviance : 0.2573 (sd 0.068444)
Explained Deviance : 0.2737 (sd 0.067316)
Percent Deviance Explained : 51.569 (sd 12.726)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.092 (sd 0.0042164)
Confusion Matrix:
observed
predicted 1 0
1 324 517
0 50 4119
AUC : 0.95639 (sd 0.018567)
Percent Correctly Classified : 88.68119 (sd 1.7011)
Sensitivity : 0.866074 (sd 0.069866)
Specificity : 0.8884692 (sd 0.016361)
Kappa : 0.4811356 (sd 0.056328)
True Skill Statistic : 0.7545432 (sd 0.075063)
Calibration Statistics
Intercept (general calibration) : -0.02680593 (sd 0.31762)
Slope (direction and variation in fit) : 0.988848 (sd 0.2089)
Testa0b1 (overall reliability of predictors) : 0.3397809 (sd 0.19781)
Testa0|b1(incorrect calibration given correct refinement) : 0.517833 (sd 0.27548)
Testb1|a (refinement given correct calibration) : 0.3449844 (sd 0.33271)
Total time = 2.26 min
Random Forest Modeling Results
Data:
C:\Withrow\Workspace\Model\rf_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 374
n(abs) = 4636
n covariates considered = 9
total time for model fitting = 0.3min
Settings:
random seed used : 19680828
n covariates considered at each split : 2
n trees : 1000
Relative performance of predictors in final model:
0 1 MeanDecreaseAccuracy MeanDecreaseGini
bio12 31.4581 92.2498 66.3007 71.1686
bio08 37.1722 59.2817 57.6834 59.1066
bio05 39.6176 50.9003 55.0889 55.2130
bio04 30.6171 49.6858 49.8989 62.0867
bio09 33.9993 35.3315 47.9689 35.0978
bio15 35.7962 38.4387 47.4891 44.3776
bio18 32.9148 44.5145 46.0944 47.1211
bio02 38.8379 31.1848 45.9173 39.3897
di_all_model 22.7922 27.1159 33.3777 23.9322
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.7671461
NULL Deviance : 0.53101
Fit Deviance : 0.19501
Explained Deviance : 0.336
Percent Deviance Explained : 63.275
Threshold Methods based on Sens=Spec
Threshold : 0.12
Confusion Matrix:
observed
predicted 1 0
1 343 358
0 31 4278
AUC : 0.9769
Percent Correctly Classified : 92.23553
Sensitivity : 0.9171123
Specificity : 0.9227783
Kappa : 0.5991095
True Skill Statistic : 0.8398906
Calibration Statistics
Intercept (general calibration) : 0.1855548
Slope (direction and variation in fit) : 1.194594
Testa0b1 (overall reliability of predictors) : 0.0003614805
Testa0|b1(incorrect calibration given correct refinement) : 0.8540328
Testb1|a (refinement given correct calibration) : 6.978172e-05
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.7668042 (sd 0.060553)
NULL Deviance : 0.531 (sd 0.0049635)
Fit Deviance : 0.1951 (sd 0.035361)
Explained Deviance : 0.3359 (sd 0.035298)
Percent Deviance Explained : 63.26 (sd 6.6545)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.4915 (sd 0.0088349)
Confusion Matrix:
observed
predicted 1 0
1 239 59
0 135 4577
AUC : 0.97583 (sd 0.0099681)
Percent Correctly Classified : 96.12739 (sd 1.0204)
Sensitivity : 0.6391181 (sd 0.080042)
Specificity : 0.987269 (sd 0.0076546)
Kappa : 0.6907709 (sd 0.081793)
True Skill Statistic : 0.6263871 (sd 0.082078)
Calibration Statistics
Intercept (general calibration) : 0.2179234 (sd 0.39086)
Slope (direction and variation in fit) : 1.199812 (sd 0.19587)
Testa0b1 (overall reliability of predictors) : 0.388223 (sd 0.34367)
Testa0|b1(incorrect calibration given correct refinement) : 0.5054063 (sd 0.25855)
Testb1|a (refinement given correct calibration) : 0.3149526 (sd 0.32356)
Total time = 7.71 min