General Linear Models
Boosted Regression Trees
Multivariate Regression Splines
Random Forests
Current Conditions According to Model
Predictions - RCP45, 2050
Predictions - RCP45, 2070
Predictions - RCP85, 2050
Predictions - RCP85, 2070
Ensemble Present Model Average
Correlation Matrix
Model Fit Details
General Linear Models
Boosted Regression Trees
Generalized Linear Model Results
Data:
C:\Withrow\Workspace\Model\glm_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 891
n(abs) = 4312
n covariates considered = 7
total time for model fitting = 0.93min
Settings:
model family : binomial
simplification method : AIC
Results:
number covariates in final model : 16
Call:
glm(formula = response ~ bio02 + I(bio15^2) + I(di_all_model^2) +
bio11 + I(bio11^2) + bio08 + bio09 + I(bio09^2) + I(bio08^2) +
bio15 + I(bio02^2) + bio08:bio09 + bio11:bio08 + bio08:bio15 +
bio11:bio09 + bio09:bio15, family = model.family, data = dat,
weights = weight, na.action = "na.exclude")
Deviance Residuals:
Min 1Q Median 3Q Max
-2.2315 -0.4619 -0.1515 -0.0007 4.0032
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.083e+01 1.397e+01 -3.638 0.000275 ***
bio02 7.161e-01 2.140e-01 3.346 0.000820 ***
I(bio15^2) -4.141e-03 1.744e-03 -2.374 0.017589 *
I(di_all_model^2) -3.798e-04 3.987e-05 -9.527 < 2e-16 ***
bio11 1.747e-01 1.377e-02 12.683 < 2e-16 ***
I(bio11^2) -8.507e-04 9.423e-05 -9.028 < 2e-16 ***
bio08 -4.897e-02 7.532e-03 -6.502 7.93e-11 ***
bio09 -5.088e-02 6.057e-03 -8.400 < 2e-16 ***
I(bio09^2) 1.076e-04 2.027e-05 5.309 1.10e-07 ***
I(bio08^2) 1.979e-04 2.258e-05 8.765 < 2e-16 ***
bio15 5.335e-01 7.416e-02 7.194 6.28e-13 ***
I(bio02^2) -2.532e-03 8.219e-04 -3.081 0.002065 **
bio08:bio09 2.043e-04 2.115e-05 9.659 < 2e-16 ***
bio11:bio08 -2.076e-04 5.395e-05 -3.848 0.000119 ***
bio08:bio15 -2.385e-03 2.674e-04 -8.920 < 2e-16 ***
bio11:bio09 -2.318e-04 6.412e-05 -3.616 0.000299 ***
bio09:bio15 -4.252e-04 1.600e-04 -2.658 0.007858 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 4764.5 on 5202 degrees of freedom
Residual deviance: 2966.1 on 5186 degrees of freedom
AIC: 3000.1
Number of Fisher Scoring iterations: 9
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.6050781
NULL Deviance : 0.91572
Fit Deviance : 0.57007
Explained Deviance : 0.34564
Percent Deviance Explained : 37.746
Threshold Methods based on Sens=Spec
Threshold : 0.24
Confusion Matrix:
observed
predicted 1 0
1 735 747
0 156 3565
AUC : 0.9016
Percent Correctly Classified : 82.64463
Sensitivity : 0.8249158
Specificity : 0.8267625
Kappa : 0.5159274
True Skill Statistic : 0.6516783
Calibration Statistics
Intercept (general calibration) : 9.241157e-05
Slope (direction and variation in fit) : 1.000284
Testa0b1 (overall reliability of predictors) : 0.999968
Testa0|b1(incorrect calibration given correct refinement) : 0.9981004
Testb1|a (refinement given correct calibration) : 0.9939057
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.5991412 (sd 0.030324)
NULL Deviance : 0.91572 (sd 0.0042226)
Fit Deviance : 0.57844 (sd 0.034561)
Explained Deviance : 0.33728 (sd 0.033923)
Percent Deviance Explained : 36.834 (sd 3.7251)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.24 (sd 0)
Confusion Matrix:
observed
predicted 1 0
1 730 755
0 161 3557
AUC : 0.89875 (sd 0.013171)
Percent Correctly Classified : 82.39652 (sd 1.1645)
Sensitivity : 0.8192884 (sd 0.035391)
Specificity : 0.8249237 (sd 0.012235)
Kappa : 0.5095933 (sd 0.029707)
True Skill Statistic : 0.6442121 (sd 0.037101)
Calibration Statistics
Intercept (general calibration) : -0.01721622 (sd 0.098573)
Slope (direction and variation in fit) : 0.9837447 (sd 0.13273)
Testa0b1 (overall reliability of predictors) : 0.5354908 (sd 0.2246)
Testa0|b1(incorrect calibration given correct refinement) : 0.7076174 (sd 0.13975)
Testb1|a (refinement given correct calibration) : 0.3406387 (sd 0.23032)
Total time = 21.47 min
Boosted Regression Tree Modeling Results
Data:
C:\Withrow\Workspace\Model\brt_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 891
n(abs) = 4312
n covariates considered = 7
total time for model fitting = 0.83min
Settings:
random seed used : 19680828
tree complexity : 9
learning rate : 0.0657
n(trees) : 300
model simplification : cross-validation
n folds : 3
n covariates in final model : 6
Relative influence of predictors in final model:
Var rel.inf
bio11 22.80530
bio09 18.07084
bio15 17.43762
bio02 16.68363
di_all_model 14.09921
bio18 10.90339
Important interactions in final model:
v1 name1 v2 name2
6 di_all_model 4 bio15
3 bio11 2 bio09
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.8292138
NULL Deviance : 0.91572
Fit Deviance : 0.32013
Explained Deviance : 0.59559
Percent Deviance Explained : 65.04
Threshold Methods based on Sens=Spec
Threshold : 0.26
Confusion Matrix:
observed
predicted 1 0
1 824 334
0 67 3978
AUC : 0.9766
Percent Correctly Classified : 92.29291
Sensitivity : 0.9248036
Specificity : 0.9225417
Kappa : 0.7573214
True Skill Statistic : 0.8473453
Calibration Statistics
Intercept (general calibration) : 0.2957373
Slope (direction and variation in fit) : 1.566342
Testa0b1 (overall reliability of predictors) : 0
Testa0|b1(incorrect calibration given correct refinement) : 0.9635748
Testb1|a (refinement given correct calibration) : 0
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.6369129 (sd 0.044896)
NULL Deviance : 0.91572 (sd 0.0042226)
Fit Deviance : 0.52946 (sd 0.044996)
Explained Deviance : 0.38627 (sd 0.045209)
Percent Deviance Explained : 42.181 (sd 4.9182)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.26 (sd 0.0066667)
Confusion Matrix:
observed
predicted 1 0
1 696 532
0 195 3780
AUC : 0.91708 (sd 0.017291)
Percent Correctly Classified : 86.03004 (sd 2.1678)
Sensitivity : 0.7811735 (sd 0.058183)
Specificity : 0.8766449 (sd 0.015198)
Kappa : 0.5722756 (sd 0.064911)
True Skill Statistic : 0.6578184 (sd 0.071526)
Calibration Statistics
Intercept (general calibration) : -0.02876412 (sd 0.1016)
Slope (direction and variation in fit) : 0.9230417 (sd 0.071315)
Testa0b1 (overall reliability of predictors) : 0.5313581 (sd 0.25142)
Testa0|b1(incorrect calibration given correct refinement) : 0.612493 (sd 0.15169)
Testb1|a (refinement given correct calibration) : 0.3827561 (sd 0.24512)
Total time = 12.04 min
MARS
Random Forests
MARS Model Results
Data:
C:\Withrow\Workspace\Model\mars_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 891
n(abs) = 4312
n covariates considered = 7
total time for model fitting = 0.12min
Settings:
random seed used : 123
mars degree : 1
mars penalty : 2
Summary of Model:
nsubsets gcv rss
bio08 15 100.0 100.0
bio02 13 78.4 78.8
di_all_model 13 66.6 67.4
bio09 11 58.7 59.5
bio18 11 58.7 59.5
bio11 11 57.8 58.6
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.5989253
NULL Deviance : 0.91572
Fit Deviance : 0.57775
Explained Deviance : 0.33797
Percent Deviance Explained : 36.908
Threshold Methods based on Sens=Spec
Threshold : 0.2
Confusion Matrix:
observed
predicted 1 0
1 722 795
0 169 3517
AUC : 0.8969
Percent Correctly Classified : 81.47223
Sensitivity : 0.8103255
Specificity : 0.8156308
Kappa : 0.4895245
True Skill Statistic : 0.6259563
Calibration Statistics
Intercept (general calibration) : -8.707437e-06
Slope (direction and variation in fit) : 1.000122
Testa0b1 (overall reliability of predictors) : 0.9999907
Testa0|b1(incorrect calibration given correct refinement) : 0.9980898
Testb1|a (refinement given correct calibration) : 0.9971446
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.5995638 (sd 0.027376)
NULL Deviance : 0.91572 (sd 0.0042226)
Fit Deviance : 0.57366 (sd 0.019148)
Explained Deviance : 0.34206 (sd 0.019696)
Percent Deviance Explained : 37.353 (sd 2.1142)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.202 (sd 0.0078881)
Confusion Matrix:
observed
predicted 1 0
1 719 787
0 172 3525
AUC : 0.89889 (sd 0.0078711)
Percent Correctly Classified : 81.56984 (sd 1.1509)
Sensitivity : 0.8069164 (sd 0.031025)
Specificity : 0.8174875 (sd 0.014517)
Kappa : 0.4904203 (sd 0.025037)
True Skill Statistic : 0.6244039 (sd 0.029771)
Calibration Statistics
Intercept (general calibration) : -0.02304299 (sd 0.082508)
Slope (direction and variation in fit) : 0.9739517 (sd 0.050136)
Testa0b1 (overall reliability of predictors) : 0.7804725 (sd 0.15225)
Testa0|b1(incorrect calibration given correct refinement) : 0.6814571 (sd 0.21341)
Testb1|a (refinement given correct calibration) : 0.6793173 (sd 0.20537)
Total time = 2.15 min
Random Forest Modeling Results
Data:
C:\Withrow\Workspace\Model\rf_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 891
n(abs) = 4312
n covariates considered = 7
total time for model fitting = 0.35min
Settings:
random seed used : 19680828
n covariates considered at each split : 3
n trees : 1000
Relative performance of predictors in final model:
0 1 MeanDecreaseAccuracy MeanDecreaseGini
di_all_model 46.6217 105.1240 102.3158 126.6017
bio09 72.7204 53.8646 97.8261 140.8348
bio02 42.7333 86.7558 97.2139 133.4032
bio15 61.4781 64.6374 96.6075 107.3622
bio08 60.5527 74.9905 91.9397 165.7882
bio11 55.9656 65.5638 82.3063 137.3632
bio18 52.3186 50.3539 79.6719 121.0719
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.6986533
NULL Deviance : 0.91572
Fit Deviance : 0.46617
Explained Deviance : 0.44955
Percent Deviance Explained : 49.093
Threshold Methods based on Sens=Spec
Threshold : 0.22
Confusion Matrix:
observed
predicted 1 0
1 780 537
0 111 3775
AUC : 0.9389
Percent Correctly Classified : 87.54565
Sensitivity : 0.8754209
Specificity : 0.8754638
Kappa : 0.6311758
True Skill Statistic : 0.7508847
Calibration Statistics
Intercept (general calibration) : -0.04086372
Slope (direction and variation in fit) : 0.9434321
Testa0b1 (overall reliability of predictors) : 0.205927
Testa0|b1(incorrect calibration given correct refinement) : 0.9125061
Testb1|a (refinement given correct calibration) : 0.07600174
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.6983316 (sd 0.020369)
NULL Deviance : 0.91572 (sd 0.0042226)
Fit Deviance : 0.46948 (sd 0.032756)
Explained Deviance : 0.44624 (sd 0.031427)
Percent Deviance Explained : 48.736 (sd 3.4849)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.503 (sd 0.017192)
Confusion Matrix:
observed
predicted 1 0
1 562 211
0 329 4101
AUC : 0.93733 (sd 0.010433)
Percent Correctly Classified : 89.62318 (sd 1.0211)
Sensitivity : 0.6306617 (sd 0.050937)
Specificity : 0.9510479 (sd 0.0106)
Kappa : 0.6136437 (sd 0.040717)
True Skill Statistic : 0.5817095 (sd 0.048801)
Calibration Statistics
Intercept (general calibration) : -0.01190836 (sd 0.15751)
Slope (direction and variation in fit) : 0.9776165 (sd 0.12183)
Testa0b1 (overall reliability of predictors) : 0.526944 (sd 0.30342)
Testa0|b1(incorrect calibration given correct refinement) : 0.570928 (sd 0.18754)
Testb1|a (refinement given correct calibration) : 0.4995247 (sd 0.35714)
Total time = 9.52 min