General Linear Models
Boosted Regression Trees
Multivariate Regression Splines
Random Forests
Current Conditions According to Model
Predictions - RCP45, 2050
Predictions - RCP45, 2070
Predictions - RCP85, 2050
Predictions - RCP85, 2070
Ensemble Present Model Average
Correlation Matrix
Model Fit Details
General Linear Models
Boosted Regression Trees
Generalized Linear Model Results
Data:
C:\Withrow\Workspace\Model\glm_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 178
n(abs) = 4822
n covariates considered = 5
total time for model fitting = 0.53min
Settings:
model family : binomial
simplification method : AIC
Results:
number covariates in final model : 18
Call:
glm(formula = response ~ bio01 + I(bio01^2) + I(di_all_model^2) +
di_all_model + I(bio08^2) + bio08 + I(bio02^2) + bio02 +
bio18 + I(bio18^2) + bio01:bio08 + bio01:bio02 + bio01:bio18 +
bio08:bio18 + bio01:di_all_model + di_all_model:bio02 + di_all_model:bio18 +
di_all_model:bio08, family = model.family, data = dat, weights = weight,
na.action = "na.exclude")
Deviance Residuals:
Min 1Q Median 3Q Max
-1.7536 -0.0128 0.0000 0.0000 3.2831
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.630e+03 2.832e+02 -5.755 8.65e-09 ***
bio01 1.098e+01 1.500e+00 7.320 2.48e-13 ***
I(bio01^2) -2.384e-02 2.939e-03 -8.110 5.04e-16 ***
I(di_all_model^2) -8.574e-03 2.014e-03 -4.257 2.08e-05 ***
di_all_model -5.278e+00 1.508e+00 -3.500 0.000466 ***
I(bio08^2) -2.924e-03 1.201e-03 -2.434 0.014915 *
bio08 -9.017e-01 6.458e-01 -1.396 0.162640
I(bio02^2) -2.069e-02 5.203e-03 -3.976 7.01e-05 ***
bio02 9.043e+00 2.174e+00 4.160 3.18e-05 ***
bio18 1.856e+00 4.221e-01 4.397 1.10e-05 ***
I(bio18^2) -2.006e-03 4.283e-04 -4.684 2.81e-06 ***
bio01:bio08 8.686e-03 2.554e-03 3.401 0.000672 ***
bio01:bio02 -1.806e-02 4.004e-03 -4.511 6.46e-06 ***
bio01:bio18 -1.408e-02 2.013e-03 -6.995 2.65e-12 ***
bio08:bio18 4.970e-03 1.243e-03 3.998 6.38e-05 ***
bio01:di_all_model 1.774e-02 4.183e-03 4.240 2.23e-05 ***
di_all_model:bio02 1.744e-02 5.234e-03 3.332 0.000862 ***
di_all_model:bio18 4.463e-03 1.752e-03 2.547 0.010863 *
di_all_model:bio08 -3.934e-03 2.077e-03 -1.894 0.058195 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1536.99 on 4999 degrees of freedom
Residual deviance: 595.84 on 4981 degrees of freedom
AIC: 633.84
Number of Fisher Scoring iterations: 13
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.6896366
NULL Deviance : 0.3074
Fit Deviance : 0.11917
Explained Deviance : 0.18823
Percent Deviance Explained : 61.233
Threshold Methods based on Sens=Spec
Threshold : 0.06
Confusion Matrix:
observed
predicted 1 0
1 169 323
0 9 4499
AUC : 0.9816
Percent Correctly Classified : 93.36
Sensitivity : 0.9494382
Specificity : 0.9330153
Kappa : 0.4771403
True Skill Statistic : 0.8824535
Calibration Statistics
Intercept (general calibration) : 0.001258352
Slope (direction and variation in fit) : 1.002319
Testa0b1 (overall reliability of predictors) : 0.9994951
Testa0|b1(incorrect calibration given correct refinement) : 0.995886
Testb1|a (refinement given correct calibration) : 0.9749818
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.6610139 (sd 0.096841)
NULL Deviance : 0.30738 (sd 0.0053556)
Fit Deviance : 0.13031 (sd 0.036223)
Explained Deviance : 0.17707 (sd 0.033972)
Percent Deviance Explained : 57.687 (sd 11.432)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.062 (sd 0.0063246)
Confusion Matrix:
observed
predicted 1 0
1 162 327
0 16 4495
AUC : 0.97739 (sd 0.013843)
Percent Correctly Classified : 93.14023 (sd 0.82044)
Sensitivity : 0.9111111 (sd 0.098688)
Specificity : 0.9321856 (sd 0.0085865)
Kappa : 0.4580485 (sd 0.044616)
True Skill Statistic : 0.8432967 (sd 0.097069)
Calibration Statistics
Intercept (general calibration) : -0.0385575 (sd 0.26918)
Slope (direction and variation in fit) : 1.046194 (sd 0.4022)
Testa0b1 (overall reliability of predictors) : 0.408 (sd 0.3429)
Testa0|b1(incorrect calibration given correct refinement) : 0.6497638 (sd 0.25801)
Testb1|a (refinement given correct calibration) : 0.3179826 (sd 0.34077)
Total time = 5.88 min
Boosted Regression Tree Modeling Results
Data:
C:\Withrow\Workspace\Model\brt_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 178
n(abs) = 4822
n covariates considered = 5
total time for model fitting = 0.2min
Settings:
random seed used : 19680828
tree complexity : 9
learning rate : 0.087
n(trees) : 300
model simplification : cross-validation
n folds : 3
n covariates in final model : 4
Relative influence of predictors in final model:
Var rel.inf
bio02 33.76256
bio18 24.11633
bio01 23.87844
di_all_model 18.24268
Important interactions in final model:
v1 name1 v2 name2
3 bio18 2 bio02
3 bio18 1 bio01
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.96668
NULL Deviance : 0.3074
Fit Deviance : 0.024769
Explained Deviance : 0.28263
Percent Deviance Explained : 91.942
Threshold Methods based on Sens=Spec
Threshold : 0.18
Confusion Matrix:
observed
predicted 1 0
1 177 27
0 1 4795
AUC : 0.9998
Percent Correctly Classified : 99.44
Sensitivity : 0.994382
Specificity : 0.9944007
Kappa : 0.9238044
True Skill Statistic : 0.9887827
Calibration Statistics
Intercept (general calibration) : 1.078933
Slope (direction and variation in fit) : 2.918262
Testa0b1 (overall reliability of predictors) : 3.330669e-16
Testa0|b1(incorrect calibration given correct refinement) : 0.8572926
Testb1|a (refinement given correct calibration) : 0
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.6589119 (sd 0.14623)
NULL Deviance : 0.30738 (sd 0.0053556)
Fit Deviance : 0.14358 (sd 0.056909)
Explained Deviance : 0.16379 (sd 0.05411)
Percent Deviance Explained : 53.44 (sd 18.103)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.2085 (sd 0.041099)
Confusion Matrix:
observed
predicted 1 0
1 122 113
0 56 4709
AUC : 0.97245 (sd 0.023165)
Percent Correctly Classified : 96.62072 (sd 2.0721)
Sensitivity : 0.6866013 (sd 0.10606)
Specificity : 0.976565 (sd 0.019315)
Kappa : 0.5958024 (sd 0.1439)
True Skill Statistic : 0.6631663 (sd 0.11622)
Calibration Statistics
Intercept (general calibration) : -0.192374 (sd 0.54173)
Slope (direction and variation in fit) : 0.7749921 (sd 0.17203)
Testa0b1 (overall reliability of predictors) : 0.2353988 (sd 0.31764)
Testa0|b1(incorrect calibration given correct refinement) : 0.4572494 (sd 0.3143)
Testb1|a (refinement given correct calibration) : 0.2546187 (sd 0.34589)
Total time = 2.72 min
MARS
Random Forests
MARS Model Results
Data:
C:\Withrow\Workspace\Model\mars_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 178
n(abs) = 4822
n covariates considered = 5
total time for model fitting = 0.04min
Settings:
random seed used : 123
mars degree : 1
mars penalty : 2
Summary of Model:
nsubsets gcv rss
bio18 11 100.0 100.0
bio02 10 93.2 93.2
bio08 7 52.8 54.0
bio01 6 43.0 44.5
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.5707064
NULL Deviance : 0.3074
Fit Deviance : 0.16284
Explained Deviance : 0.14456
Percent Deviance Explained : 47.026
Threshold Methods based on Sens=Spec
Threshold : 0.04
Confusion Matrix:
observed
predicted 1 0
1 157 654
0 21 4168
AUC : 0.9552
Percent Correctly Classified : 86.5
Sensitivity : 0.8820225
Specificity : 0.8643716
Kappa : 0.2751731
True Skill Statistic : 0.7463941
Calibration Statistics
Intercept (general calibration) : 0.001257747
Slope (direction and variation in fit) : 1.00116
Testa0b1 (overall reliability of predictors) : 0.9998125
Testa0|b1(incorrect calibration given correct refinement) : 0.9963392
Testb1|a (refinement given correct calibration) : 0.9849871
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.5586426 (sd 0.14748)
NULL Deviance : 0.30738 (sd 0.0053556)
Fit Deviance : 0.16807 (sd 0.047253)
Explained Deviance : 0.13931 (sd 0.045421)
Percent Deviance Explained : 45.403 (sd 15.019)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.044 (sd 0.0069921)
Confusion Matrix:
observed
predicted 1 0
1 158 571
0 20 4251
AUC : 0.95295 (sd 0.029494)
Percent Correctly Classified : 88.18182 (sd 2.3881)
Sensitivity : 0.8879085 (sd 0.082603)
Specificity : 0.8815958 (sd 0.023402)
Kappa : 0.3149052 (sd 0.065632)
True Skill Statistic : 0.7695043 (sd 0.094323)
Calibration Statistics
Intercept (general calibration) : 0.01241452 (sd 0.56978)
Slope (direction and variation in fit) : 1.107221 (sd 0.52581)
Testa0b1 (overall reliability of predictors) : 0.4171244 (sd 0.39821)
Testa0|b1(incorrect calibration given correct refinement) : 0.6758337 (sd 0.24734)
Testb1|a (refinement given correct calibration) : 0.3804735 (sd 0.37723)
Total time = 0.47 min
Random Forest Modeling Results
Data:
C:\Withrow\Workspace\Model\rf_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 178
n(abs) = 4822
n covariates considered = 5
total time for model fitting = 0.1min
Settings:
random seed used : 19680828
n covariates considered at each split : 2
n trees : 1000
Relative performance of predictors in final model:
0 1 MeanDecreaseAccuracy MeanDecreaseGini
di_all_model 44.7719 64.0433 71.1545 35.0599
bio01 45.3397 73.0138 62.3282 39.3629
bio18 45.6033 99.7031 58.6356 50.1085
bio02 45.2595 72.0722 57.5019 49.3048
bio08 47.4259 43.0892 55.9959 41.8027
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.7434644
NULL Deviance : 0.3074
Fit Deviance : 0.1102
Explained Deviance : 0.1972
Percent Deviance Explained : 64.152
Threshold Methods based on Sens=Spec
Threshold : 0.05
Confusion Matrix:
observed
predicted 1 0
1 166 307
0 12 4515
AUC : 0.983
Percent Correctly Classified : 93.62
Sensitivity : 0.9325843
Specificity : 0.9363335
Kappa : 0.4832522
True Skill Statistic : 0.8689177
Calibration Statistics
Intercept (general calibration) : 0.1305058
Slope (direction and variation in fit) : 1.121859
Testa0b1 (overall reliability of predictors) : 0.08414175
Testa0|b1(incorrect calibration given correct refinement) : 0.6135587
Testb1|a (refinement given correct calibration) : 0.03024206
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.7308237 (sd 0.091508)
NULL Deviance : 0.30738 (sd 0.0053556)
Fit Deviance : 0.1131 (sd 0.030609)
Explained Deviance : 0.19427 (sd 0.02806)
Percent Deviance Explained : 63.28 (sd 9.644)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.482 (sd 0.012517)
Confusion Matrix:
observed
predicted 1 0
1 101 33
0 77 4789
AUC : 0.97724 (sd 0.016134)
Percent Correctly Classified : 97.80032 (sd 0.6921)
Sensitivity : 0.5689542 (sd 0.13772)
Specificity : 0.9931565 (sd 0.0050855)
Kappa : 0.6335445 (sd 0.12092)
True Skill Statistic : 0.5621108 (sd 0.13752)
Calibration Statistics
Intercept (general calibration) : 0.1886707 (sd 0.57169)
Slope (direction and variation in fit) : 1.156259 (sd 0.42104)
Testa0b1 (overall reliability of predictors) : 0.4838448 (sd 0.30126)
Testa0|b1(incorrect calibration given correct refinement) : 0.6064732 (sd 0.20757)
Testb1|a (refinement given correct calibration) : 0.3963197 (sd 0.33748)
Total time = 1.56 min