General Linear Models
Boosted Regression Trees
Multivariate Regression Splines
Random Forests
Current Conditions According to Model
Predictions - RCP45, 2050
Predictions - RCP45, 2070
Predictions - RCP85, 2050
Predictions - RCP85, 2070
Ensemble Present Model Average
Correlation Matrix
Model Fit Details
General Linear Models
Boosted Regression Trees
Generalized Linear Model Results
Data:
C:\Withrow\Workspace\Model\glm_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 338
n(abs) = 4667
n covariates considered = 7
total time for model fitting = 0.57min
Settings:
model family : binomial
simplification method : AIC
Results:
number covariates in final model : 18
Call:
glm(formula = response ~ bio15 + I(bio08^2) + bio03 + I(bio03^2) +
I(bio14^2) + bio16 + I(bio16^2) + bio09 + I(bio09^2) + I(bio15^2) +
I(di_all_model^2) + di_all_model + bio14 + bio03:bio09 +
bio15:bio09 + bio15:bio03 + bio03:bio16 + bio03:bio14, family = model.family,
data = dat, weights = weight, na.action = "na.exclude")
Deviance Residuals:
Min 1Q Median 3Q Max
-2.3393 -0.0270 -0.0015 0.0000 3.6417
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.603e+01 5.555e+01 -1.369 0.171077
bio15 -1.776e+00 4.272e-01 -4.157 3.22e-05 ***
I(bio08^2) -1.131e-03 1.529e-04 -7.396 1.41e-13 ***
bio03 3.099e+00 1.761e+00 1.760 0.078433 .
I(bio03^2) -3.642e-02 1.449e-02 -2.513 0.011970 *
I(bio14^2) -1.501e-02 6.743e-03 -2.227 0.025980 *
bio16 8.227e-02 1.469e-02 5.599 2.16e-08 ***
I(bio16^2) -1.989e-05 3.969e-06 -5.011 5.41e-07 ***
bio09 6.502e-01 1.483e-01 4.384 1.16e-05 ***
I(bio09^2) -9.832e-04 1.828e-04 -5.379 7.50e-08 ***
I(bio15^2) -5.110e-03 1.369e-03 -3.732 0.000190 ***
I(di_all_model^2) -6.364e-04 2.501e-04 -2.545 0.010928 *
di_all_model 3.407e-02 1.492e-02 2.284 0.022393 *
bio14 -2.290e+00 1.265e+00 -1.810 0.070250 .
bio03:bio09 -1.330e-02 2.950e-03 -4.511 6.46e-06 ***
bio15:bio09 4.217e-03 8.342e-04 5.055 4.29e-07 ***
bio15:bio03 3.926e-02 1.050e-02 3.739 0.000185 ***
bio03:bio16 -1.234e-03 3.349e-04 -3.685 0.000229 ***
bio03:bio14 5.279e-02 2.611e-02 2.021 0.043240 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 2474.56 on 5004 degrees of freedom
Residual deviance: 752.65 on 4986 degrees of freedom
AIC: 790.65
Number of Fisher Scoring iterations: 12
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.7983906
NULL Deviance : 0.49442
Fit Deviance : 0.15038
Explained Deviance : 0.34404
Percent Deviance Explained : 69.585
Threshold Methods based on Sens=Spec
Threshold : 0.1
Confusion Matrix:
observed
predicted 1 0
1 317 291
0 21 4376
AUC : 0.9855
Percent Correctly Classified : 93.76623
Sensitivity : 0.9378698
Specificity : 0.9376473
Kappa : 0.6388389
True Skill Statistic : 0.8755171
Calibration Statistics
Intercept (general calibration) : 6.261828e-05
Slope (direction and variation in fit) : 1.001291
Testa0b1 (overall reliability of predictors) : 0.9997302
Testa0|b1(incorrect calibration given correct refinement) : 0.9963086
Testb1|a (refinement given correct calibration) : 0.9818369
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.7871675 (sd 0.03654)
NULL Deviance : 0.4944 (sd 0.0037479)
Fit Deviance : 0.1665 (sd 0.021245)
Explained Deviance : 0.3279 (sd 0.021333)
Percent Deviance Explained : 66.323 (sd 4.2938)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.113 (sd 0.0082327)
Confusion Matrix:
observed
predicted 1 0
1 313 290
0 25 4377
AUC : 0.98224 (sd 0.0046378)
Percent Correctly Classified : 93.70575 (sd 0.7479)
Sensitivity : 0.9262923 (sd 0.062348)
Specificity : 0.9378558 (sd 0.010387)
Kappa : 0.6340848 (sd 0.029787)
True Skill Statistic : 0.8641481 (sd 0.055758)
Calibration Statistics
Intercept (general calibration) : -0.07242661 (sd 0.251)
Slope (direction and variation in fit) : 0.9506497 (sd 0.20801)
Testa0b1 (overall reliability of predictors) : 0.4660885 (sd 0.33659)
Testa0|b1(incorrect calibration given correct refinement) : 0.6090238 (sd 0.37101)
Testb1|a (refinement given correct calibration) : 0.3604657 (sd 0.26815)
Total time = 5.62 min
Boosted Regression Tree Modeling Results
Data:
C:\Withrow\Workspace\Model\brt_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 338
n(abs) = 4667
n covariates considered = 7
total time for model fitting = 0.28min
Settings:
random seed used : 19680828
tree complexity : 9
learning rate : 0.0524
n(trees) : 300
model simplification : cross-validation
n folds : 3
n covariates in final model : 3
Relative influence of predictors in final model:
Var rel.inf
bio08 39.42277
bio16 37.97568
bio14 22.60156
Important interactions in final model:
v1 name1 v2 name2
3 bio16 2 bio14
3 bio16 1 bio08
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.9053775
NULL Deviance : 0.49442
Fit Deviance : 0.085625
Explained Deviance : 0.40879
Percent Deviance Explained : 82.682
Threshold Methods based on Sens=Spec
Threshold : 0.21
Confusion Matrix:
observed
predicted 1 0
1 330 117
0 8 4550
AUC : 0.9969
Percent Correctly Classified : 97.5025
Sensitivity : 0.9763314
Specificity : 0.9749304
Kappa : 0.8274972
True Skill Statistic : 0.9512617
Calibration Statistics
Intercept (general calibration) : 0.3534495
Slope (direction and variation in fit) : 1.826928
Testa0b1 (overall reliability of predictors) : 1.110223e-16
Testa0|b1(incorrect calibration given correct refinement) : 0.9829219
Testb1|a (refinement given correct calibration) : 0
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.6919071 (sd 0.085379)
NULL Deviance : 0.4944 (sd 0.0037479)
Fit Deviance : 0.21897 (sd 0.057948)
Explained Deviance : 0.27543 (sd 0.057614)
Percent Deviance Explained : 55.718 (sd 11.647)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.218 (sd 0.028597)
Confusion Matrix:
observed
predicted 1 0
1 261 199
0 77 4468
AUC : 0.97054 (sd 0.015841)
Percent Correctly Classified : 94.48468 (sd 1.0286)
Sensitivity : 0.7723708 (sd 0.081728)
Specificity : 0.9573511 (sd 0.0075137)
Kappa : 0.6249441 (sd 0.06828)
True Skill Statistic : 0.7297219 (sd 0.084581)
Calibration Statistics
Intercept (general calibration) : -0.2036997 (sd 0.21446)
Slope (direction and variation in fit) : 0.7741092 (sd 0.12721)
Testa0b1 (overall reliability of predictors) : 0.2248248 (sd 0.27463)
Testa0|b1(incorrect calibration given correct refinement) : 0.430406 (sd 0.27545)
Testb1|a (refinement given correct calibration) : 0.2160034 (sd 0.29747)
Total time = 3.41 min
MARS
Random Forests
MARS Model Results
Data:
C:\Withrow\Workspace\Model\mars_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 338
n(abs) = 4667
n covariates considered = 7
total time for model fitting = 0.05min
Settings:
random seed used : 123
mars degree : 1
mars penalty : 2
Summary of Model:
nsubsets gcv rss
bio16 14 100.0 100.0
bio15 12 63.8 64.4
bio03 9 46.1 46.8
bio08 9 41.1 41.9
bio14 5 30.3 31.0
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.7712845
NULL Deviance : 0.49442
Fit Deviance : 0.17076
Explained Deviance : 0.32366
Percent Deviance Explained : 65.463
Threshold Methods based on Sens=Spec
Threshold : 0.09
Confusion Matrix:
observed
predicted 1 0
1 310 346
0 28 4321
AUC : 0.9803
Percent Correctly Classified : 92.52747
Sensitivity : 0.9171598
Specificity : 0.9258624
Kappa : 0.5869217
True Skill Statistic : 0.8430222
Calibration Statistics
Intercept (general calibration) : 0.0002155923
Slope (direction and variation in fit) : 1.000864
Testa0b1 (overall reliability of predictors) : 0.9998462
Testa0|b1(incorrect calibration given correct refinement) : 0.9964841
Testb1|a (refinement given correct calibration) : 0.986453
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.763516 (sd 0.047392)
NULL Deviance : 0.4944 (sd 0.0037479)
Fit Deviance : 0.19223 (sd 0.052836)
Explained Deviance : 0.30218 (sd 0.052314)
Percent Deviance Explained : 61.13 (sd 10.604)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.086 (sd 0.0069921)
Confusion Matrix:
observed
predicted 1 0
1 306 365
0 32 4302
AUC : 0.97614 (sd 0.0086034)
Percent Correctly Classified : 92.0675 (sd 0.95896)
Sensitivity : 0.9053476 (sd 0.05506)
Specificity : 0.921787 (sd 0.012069)
Kappa : 0.5686108 (sd 0.032607)
True Skill Statistic : 0.8271346 (sd 0.049091)
Calibration Statistics
Intercept (general calibration) : -0.04199831 (sd 0.22332)
Slope (direction and variation in fit) : 0.9739026 (sd 0.21035)
Testa0b1 (overall reliability of predictors) : 0.5191839 (sd 0.31717)
Testa0|b1(incorrect calibration given correct refinement) : 0.5037387 (sd 0.31353)
Testb1|a (refinement given correct calibration) : 0.4482182 (sd 0.29433)
Total time = 0.57 min
Random Forest Modeling Results
Data:
C:\Withrow\Workspace\Model\rf_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 338
n(abs) = 4667
n covariates considered = 7
total time for model fitting = 0.11min
Settings:
random seed used : 19680828
n covariates considered at each split : 6
n trees : 1000
Relative performance of predictors in final model:
0 1 MeanDecreaseAccuracy MeanDecreaseGini
bio08 51.3092 124.9080 121.7339 112.6242
bio16 45.0326 177.9007 92.5364 97.2990
bio14 57.8836 60.7307 74.7498 59.9791
bio03 4.4086 95.2890 74.2806 35.9832
bio09 34.5013 36.5680 47.8160 34.8123
di_all_model 14.5784 17.7554 24.0374 22.3650
bio15 16.6852 18.2082 20.9747 34.5487
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.7867627
NULL Deviance : 0.49442
Fit Deviance : 0.16227
Explained Deviance : 0.33214
Percent Deviance Explained : 67.179
Threshold Methods based on Sens=Spec
Threshold : 0.11
Confusion Matrix:
observed
predicted 1 0
1 315 282
0 23 4385
AUC : 0.9826
Percent Correctly Classified : 93.90609
Sensitivity : 0.9319527
Specificity : 0.9395757
Kappa : 0.6430102
True Skill Statistic : 0.8715284
Calibration Statistics
Intercept (general calibration) : -0.09742587
Slope (direction and variation in fit) : 0.9964476
Testa0b1 (overall reliability of predictors) : 0.5977118
Testa0|b1(incorrect calibration given correct refinement) : 0.3117882
Testb1|a (refinement given correct calibration) : 0.9372018
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.7964653 (sd 0.043655)
NULL Deviance : 0.4944 (sd 0.0037479)
Fit Deviance : 0.15275 (sd 0.025124)
Explained Deviance : 0.34165 (sd 0.023392)
Percent Deviance Explained : 69.12 (sd 4.9546)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.489 (sd 0.0065828)
Confusion Matrix:
observed
predicted 1 0
1 233 60
0 105 4607
AUC : 0.98536 (sd 0.0050213)
Percent Correctly Classified : 96.70266 (sd 0.74067)
Sensitivity : 0.6893048 (sd 0.078855)
Specificity : 0.98714 (sd 0.0044195)
Kappa : 0.7197897 (sd 0.06598)
True Skill Statistic : 0.6764448 (sd 0.07987)
Calibration Statistics
Intercept (general calibration) : 0.01655369 (sd 0.19037)
Slope (direction and variation in fit) : 1.093414 (sd 0.14414)
Testa0b1 (overall reliability of predictors) : 0.5884259 (sd 0.27361)
Testa0|b1(incorrect calibration given correct refinement) : 0.6470398 (sd 0.32698)
Testb1|a (refinement given correct calibration) : 0.4830021 (sd 0.24996)
Total time = 1.76 min