General Linear Models
Boosted Regression Trees
Multivariate Regression Splines
Random Forests
Current Conditions According to Model
Predictions - RCP45, 2050
Predictions - RCP45, 2070
Predictions - RCP85, 2050
Predictions - RCP85, 2070
Ensemble Present Model Average
Correlation Matrix
Model Fit Details
General Linear Models
Boosted Regression Trees
Generalized Linear Model Results
Data:
C:\Withrow\Workspace\Model\glm_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 619
n(abs) = 4387
n covariates considered = 9
total time for model fitting = 3.55min
Settings:
model family : binomial
simplification method : AIC
Results:
number covariates in final model : 25
Call:
glm(formula = response ~ I(bio05^2) + bio05 + bio08 + bio19 +
I(bio19^2) + di_all_model + I(bio09^2) + I(bio04^2) + bio09 +
I(di_all_model^2) + bio12 + I(bio12^2) + bio04 + I(bio08^2) +
bio05:bio08 + bio08:bio19 + bio05:bio19 + bio19:bio09 + bio19:bio12 +
bio12:bio04 + di_all_model:bio04 + bio05:bio04 + bio05:bio09 +
di_all_model:bio12 + bio08:bio12, family = model.family,
data = dat, weights = weight, na.action = "na.exclude")
Deviance Residuals:
Min 1Q Median 3Q Max
-2.3448 -0.2144 -0.0473 -0.0033 5.7569
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.025e+02 2.613e+01 -3.921 8.81e-05 ***
I(bio05^2) -8.347e-04 1.299e-04 -6.428 1.29e-10 ***
bio05 2.370e-01 8.111e-02 2.922 0.003483 **
bio08 1.623e-01 2.884e-02 5.629 1.82e-08 ***
bio19 -2.761e-01 5.285e-02 -5.225 1.74e-07 ***
I(bio19^2) -6.879e-04 1.573e-04 -4.373 1.22e-05 ***
di_all_model 3.457e-01 8.016e-02 4.313 1.61e-05 ***
I(bio09^2) -1.711e-04 3.024e-05 -5.656 1.55e-08 ***
I(bio04^2) -3.461e-07 1.390e-07 -2.491 0.012753 *
bio09 -8.545e-03 2.401e-02 -0.356 0.721928
I(di_all_model^2) 7.219e-04 1.715e-04 4.209 2.56e-05 ***
bio12 1.861e-01 3.100e-02 6.005 1.92e-09 ***
I(bio12^2) -1.191e-04 1.933e-05 -6.161 7.23e-10 ***
bio04 6.602e-03 3.544e-03 1.863 0.062469 .
I(bio08^2) 6.417e-05 3.990e-05 1.608 0.107771
bio05:bio08 -3.587e-04 1.042e-04 -3.442 0.000577 ***
bio08:bio19 -2.864e-04 1.054e-04 -2.717 0.006586 **
bio05:bio19 1.441e-03 1.797e-04 8.020 1.06e-15 ***
bio19:bio09 -2.080e-04 6.219e-05 -3.345 0.000822 ***
bio19:bio12 1.680e-04 7.348e-05 2.287 0.022209 *
bio12:bio04 -1.144e-05 2.293e-06 -4.989 6.07e-07 ***
di_all_model:bio04 -4.614e-05 8.025e-06 -5.749 8.97e-09 ***
bio05:bio04 1.848e-05 6.003e-06 3.078 0.002085 **
bio05:bio09 1.284e-04 8.007e-05 1.603 0.108919
di_all_model:bio12 -1.282e-04 7.087e-05 -1.809 0.070416 .
bio08:bio12 -6.625e-05 3.812e-05 -1.738 0.082234 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 3745.9 on 5005 degrees of freedom
Residual deviance: 1688.3 on 4980 degrees of freedom
AIC: 1740.3
Number of Fisher Scoring iterations: 9
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.7275207
NULL Deviance : 0.74828
Fit Deviance : 0.33725
Explained Deviance : 0.41103
Percent Deviance Explained : 54.93
Threshold Methods based on Sens=Spec
Threshold : 0.18
Confusion Matrix:
observed
predicted 1 0
1 549 484
0 70 3903
AUC : 0.9558
Percent Correctly Classified : 88.93328
Sensitivity : 0.8869144
Specificity : 0.889674
Kappa : 0.6033041
True Skill Statistic : 0.7765884
Calibration Statistics
Intercept (general calibration) : 0.005475958
Slope (direction and variation in fit) : 1.008618
Testa0b1 (overall reliability of predictors) : 0.9775155
Testa0|b1(incorrect calibration given correct refinement) : 0.9975337
Testb1|a (refinement given correct calibration) : 0.8311371
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.714541 (sd 0.040364)
NULL Deviance : 0.74827 (sd 0.0023258)
Fit Deviance : 0.35769 (sd 0.041966)
Explained Deviance : 0.39059 (sd 0.042432)
Percent Deviance Explained : 52.195 (sd 5.629)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.168 (sd 0.010328)
Confusion Matrix:
observed
predicted 1 0
1 540 515
0 79 3872
AUC : 0.94951 (sd 0.012039)
Percent Correctly Classified : 88.13497 (sd 1.7938)
Sensitivity : 0.8723427 (sd 0.031918)
Specificity : 0.8826172 (sd 0.018459)
Kappa : 0.5810917 (sd 0.048564)
True Skill Statistic : 0.7549599 (sd 0.042076)
Calibration Statistics
Intercept (general calibration) : -0.02306003 (sd 0.23292)
Slope (direction and variation in fit) : 0.9633308 (sd 0.20081)
Testa0b1 (overall reliability of predictors) : 0.4738153 (sd 0.3655)
Testa0|b1(incorrect calibration given correct refinement) : 0.566982 (sd 0.26298)
Testb1|a (refinement given correct calibration) : 0.4405675 (sd 0.36817)
Total time = 41.49 min
Boosted Regression Tree Modeling Results
Data:
C:\Withrow\Workspace\Model\brt_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 619
n(abs) = 4387
n covariates considered = 9
total time for model fitting = 0.83min
Settings:
random seed used : 19680828
tree complexity : 9
learning rate : 0.0972
n(trees) : 300
model simplification : cross-validation
n folds : 3
n covariates in final model : 6
Relative influence of predictors in final model:
Var rel.inf
bio08 27.817106
bio19 21.662333
bio05 21.257507
bio09 11.014134
bio12 9.879168
bio15 8.369751
Important interactions in final model:
v1 name1 v2 name2
2 bio08 1 bio05
6 bio19 1 bio05
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.9358965
NULL Deviance : 0.74828
Fit Deviance : 0.12119
Explained Deviance : 0.62709
Percent Deviance Explained : 83.804
Threshold Methods based on Sens=Spec
Threshold : 0.27
Confusion Matrix:
observed
predicted 1 0
1 605 97
0 14 4290
AUC : 0.9977
Percent Correctly Classified : 97.78266
Sensitivity : 0.9773829
Specificity : 0.9778892
Kappa : 0.903259
True Skill Statistic : 0.9552721
Calibration Statistics
Intercept (general calibration) : 0.6293789
Slope (direction and variation in fit) : 2.271101
Testa0b1 (overall reliability of predictors) : 0
Testa0|b1(incorrect calibration given correct refinement) : 0.9505222
Testb1|a (refinement given correct calibration) : 0
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.7430845 (sd 0.043565)
NULL Deviance : 0.74827 (sd 0.0023258)
Fit Deviance : 0.33564 (sd 0.048734)
Explained Deviance : 0.41263 (sd 0.049497)
Percent Deviance Explained : 55.138 (sd 6.5586)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.28 (sd 0.027487)
Confusion Matrix:
observed
predicted 1 0
1 485 216
0 134 4171
AUC : 0.95677 (sd 0.012222)
Percent Correctly Classified : 93.00782 (sd 1.8017)
Sensitivity : 0.7834479 (sd 0.041585)
Specificity : 0.9507619 (sd 0.018441)
Kappa : 0.6968933 (sd 0.065413)
True Skill Statistic : 0.7342098 (sd 0.049211)
Calibration Statistics
Intercept (general calibration) : 0.02870463 (sd 0.26509)
Slope (direction and variation in fit) : 0.8586167 (sd 0.095931)
Testa0b1 (overall reliability of predictors) : 0.2144228 (sd 0.27527)
Testa0|b1(incorrect calibration given correct refinement) : 0.3967291 (sd 0.32544)
Testb1|a (refinement given correct calibration) : 0.2660606 (sd 0.32604)
Total time = 12.35 min
MARS
Random Forests
MARS Model Results
Data:
C:\Withrow\Workspace\Model\mars_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 619
n(abs) = 4387
n covariates considered = 9
total time for model fitting = 0.1min
Settings:
random seed used : 123
mars degree : 1
mars penalty : 2
Summary of Model:
nsubsets gcv rss
bio08 14 100.0 100.0
bio19 13 90.0 90.1
bio05 13 80.7 81.1
di_all_model 9 40.6 41.9
bio09 8 33.7 35.2
bio12 3 12.2 14.0
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.6924679
NULL Deviance : 0.74828
Fit Deviance : 0.38683
Explained Deviance : 0.36144
Percent Deviance Explained : 48.303
Threshold Methods based on Sens=Spec
Threshold : 0.12
Confusion Matrix:
observed
predicted 1 0
1 532 658
0 87 3729
AUC : 0.9328
Percent Correctly Classified : 85.11786
Sensitivity : 0.8594507
Specificity : 0.8500114
Kappa : 0.5081564
True Skill Statistic : 0.7094621
Calibration Statistics
Intercept (general calibration) : 6.654607e-05
Slope (direction and variation in fit) : 1.000223
Testa0b1 (overall reliability of predictors) : 0.9999764
Testa0|b1(incorrect calibration given correct refinement) : 0.9976369
Testb1|a (refinement given correct calibration) : 0.9950494
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.6877934 (sd 0.040021)
NULL Deviance : 0.74827 (sd 0.0023258)
Fit Deviance : 0.40251 (sd 0.06353)
Explained Deviance : 0.34576 (sd 0.064183)
Percent Deviance Explained : 46.201 (sd 8.5295)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.129 (sd 0.0073786)
Confusion Matrix:
observed
predicted 1 0
1 530 624
0 89 3763
AUC : 0.93205 (sd 0.01973)
Percent Correctly Classified : 85.75745 (sd 1.0723)
Sensitivity : 0.8561079 (sd 0.058077)
Specificity : 0.8577636 (sd 0.011452)
Kappa : 0.5205179 (sd 0.033819)
True Skill Statistic : 0.7138715 (sd 0.056213)
Calibration Statistics
Intercept (general calibration) : 0.0212044 (sd 0.27573)
Slope (direction and variation in fit) : 1.017555 (sd 0.19699)
Testa0b1 (overall reliability of predictors) : 0.3834428 (sd 0.31737)
Testa0|b1(incorrect calibration given correct refinement) : 0.5665344 (sd 0.23495)
Testb1|a (refinement given correct calibration) : 0.3417934 (sd 0.33897)
Total time = 2.02 min
Random Forest Modeling Results
Data:
C:\Withrow\Workspace\Model\rf_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 619
n(abs) = 4387
n covariates considered = 9
total time for model fitting = 0.34min
Settings:
random seed used : 19680828
n covariates considered at each split : 2
n trees : 1000
Relative performance of predictors in final model:
0 1 MeanDecreaseAccuracy MeanDecreaseGini
bio08 70.3952 62.2861 86.1833 128.4870
bio05 60.4599 56.1493 71.6299 101.0251
bio19 59.4401 58.4447 70.5978 90.7050
bio12 50.7442 43.2419 62.8779 70.4271
bio09 52.7913 44.1152 62.7271 82.2899
bio02 55.6196 26.5687 59.4317 52.4684
bio04 46.1199 40.6457 57.6993 60.2794
di_all_model 48.2337 19.3482 49.8899 44.8466
bio15 39.2548 38.7210 47.1583 53.8781
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.7737424
NULL Deviance : 0.74828
Fit Deviance : 0.29342
Explained Deviance : 0.45485
Percent Deviance Explained : 60.787
Threshold Methods based on Sens=Spec
Threshold : 0.17
Confusion Matrix:
observed
predicted 1 0
1 561 389
0 58 3998
AUC : 0.9684
Percent Correctly Classified : 91.07072
Sensitivity : 0.9063005
Specificity : 0.9113289
Kappa : 0.6649331
True Skill Statistic : 0.8176294
Calibration Statistics
Intercept (general calibration) : 0.2340905
Slope (direction and variation in fit) : 1.217472
Testa0b1 (overall reliability of predictors) : 1.337379e-06
Testa0|b1(incorrect calibration given correct refinement) : 0.5155011
Testb1|a (refinement given correct calibration) : 2.468077e-07
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.7684863 (sd 0.032403)
NULL Deviance : 0.74827 (sd 0.0023258)
Fit Deviance : 0.29761 (sd 0.028769)
Explained Deviance : 0.45066 (sd 0.029641)
Percent Deviance Explained : 60.223 (sd 3.8886)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.495 (sd 0.0091287)
Confusion Matrix:
observed
predicted 1 0
1 408 103
0 211 4284
AUC : 0.96731 (sd 0.0097445)
Percent Correctly Classified : 93.72743 (sd 0.75569)
Sensitivity : 0.6590428 (sd 0.030089)
Specificity : 0.9765241 (sd 0.0089234)
Kappa : 0.6874868 (sd 0.032206)
True Skill Statistic : 0.6355669 (sd 0.028867)
Calibration Statistics
Intercept (general calibration) : 0.2486845 (sd 0.31251)
Slope (direction and variation in fit) : 1.211483 (sd 0.2035)
Testa0b1 (overall reliability of predictors) : 0.3801963 (sd 0.36801)
Testa0|b1(incorrect calibration given correct refinement) : 0.618126 (sd 0.27892)
Testb1|a (refinement given correct calibration) : 0.3344707 (sd 0.3958)
Total time = 8.4 min