General Linear Models
Boosted Regression Trees
Multivariate Regression Splines
Random Forests
Current Conditions According to Model
No Image Available
No Image Available
No Image Available
No Image Available
Predictions - RCP45, 2050
No Image Available
No Image Available
No Image Available
No Image Available
Predictions - RCP45, 2070
No Image Available
No Image Available
No Image Available
No Image Available
Predictions - RCP85, 2050
No Image Available
No Image Available
No Image Available
No Image Available
Predictions - RCP85, 2070
No Image Available
No Image Available
No Image Available
No Image Available
Ensemble Present Model Average
No Image Available
Correlation Matrix
Model Fit Details
General Linear Models
Boosted Regression Trees
Generalized Linear Model Results
Data:
G:\Results01\16\Model\glm_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 20
n(abs) = 4992
n covariates considered = 7
total time for model fitting = 0.4min
Settings:
model family : binomial
simplification method : AIC
Results:
number covariates in final model : 7
Call:
glm(formula = response ~ I(bio05^2) + bio02 + bio12 + I(bio18^2) +
I(bio08^2) + di_all_model + I(bio14^2), family = model.family,
data = dat, weights = weight, na.action = "na.exclude")
Deviance Residuals:
Min 1Q Median 3Q Max
-1.1697 -0.0035 -0.0004 0.0000 3.2897
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.916e+01 1.135e+01 -3.450 0.000561 ***
I(bio05^2) -4.967e-04 1.140e-04 -4.358 1.32e-05 ***
bio02 3.374e-01 1.054e-01 3.202 0.001364 **
bio12 3.824e-02 9.529e-03 4.012 6.01e-05 ***
I(bio18^2) -1.348e-04 4.708e-05 -2.864 0.004178 **
I(bio08^2) 2.189e-04 6.458e-05 3.390 0.000699 ***
di_all_model -2.138e-01 4.467e-02 -4.786 1.70e-06 ***
I(bio14^2) -5.007e-04 3.098e-04 -1.616 0.106019
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 260.87 on 5011 degrees of freedom
Residual deviance: 112.77 on 5004 degrees of freedom
AIC: 128.77
Number of Fisher Scoring iterations: 13
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.4856269
NULL Deviance : 0.05205
Fit Deviance : 0.022501
Explained Deviance : 0.029549
Percent Deviance Explained : 56.771
Threshold Methods based on Sens=Spec
Threshold : 0.01
Confusion Matrix:
observed
predicted 1 0
1 19 172
0 1 4820
AUC : 0.9912
Percent Correctly Classified : 96.54828
Sensitivity : 0.95
Specificity : 0.9655449
Kappa : 0.1741284
True Skill Statistic : 0.9155449
Calibration Statistics
Intercept (general calibration) : 0.01746305
Slope (direction and variation in fit) : 1.010514
Testa0b1 (overall reliability of predictors) : 0.9977419
Testa0|b1(incorrect calibration given correct refinement) : 0.9898054
Testb1|a (refinement given correct calibration) : 0.947366
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.3445363 (sd 0.21997)
NULL Deviance : 0.05205 (sd 5.5597e-05)
Fit Deviance : 0.030423 (sd 0.011879)
Explained Deviance : 0.021627 (sd 0.011851)
Percent Deviance Explained : 41.562 (sd 22.763)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.012 (sd 0.0042164)
Confusion Matrix:
observed
predicted 1 0
1 18 200
0 2 4792
AUC : 0.98468 (sd 0.010283)
Percent Correctly Classified : 95.97092 (sd 1.5605)
Sensitivity : 0.9 (sd 0.21082)
Specificity : 0.9599491 (sd 0.016065)
Kappa : 0.1571417 (sd 0.05982)
True Skill Statistic : 0.8599491 (sd 0.20341)
Calibration Statistics
Intercept (general calibration) : 0.4806089 (sd 2.7546)
Slope (direction and variation in fit) : 1.286672 (sd 1.2606)
Testa0b1 (overall reliability of predictors) : 0.5682104 (sd 0.34)
Testa0|b1(incorrect calibration given correct refinement) : 0.7122129 (sd 0.22192)
Testb1|a (refinement given correct calibration) : 0.4200923 (sd 0.31964)
Total time = 6.3 min
Boosted Regression Tree Modeling Results
Data:
G:\Results01\16\Model\brt_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 20
n(abs) = 4992
n covariates considered = 7
total time for model fitting = 0.44min
Settings:
random seed used : 19680828
tree complexity : 9
learning rate : 0.0317
n(trees) : 300
model simplification : cross-validation
n folds : 3
n covariates in final model : 2
Relative influence of predictors in final model:
Var rel.inf
bio05 55.11439
bio14 44.88561
Important interactions in final model:
v1 name1 v2 name2
2 bio14 1 bio05
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.9238353
NULL Deviance : 0.05205
Fit Deviance : 0.006486
Explained Deviance : 0.045564
Percent Deviance Explained : 87.539
Threshold Methods based on Sens=Spec
Threshold : 0.09
Confusion Matrix:
observed
predicted 1 0
1 20 20
0 0 4972
AUC : 0.9998
Percent Correctly Classified : 99.60096
Sensitivity : 1
Specificity : 0.9959936
Kappa : 0.6648837
True Skill Statistic : 0.9959936
Calibration Statistics
Intercept (general calibration) : 1.675249
Slope (direction and variation in fit) : 2.666351
Testa0b1 (overall reliability of predictors) : 0.0004114937
Testa0|b1(incorrect calibration given correct refinement) : 0.9740555
Testb1|a (refinement given correct calibration) : 7.86539e-05
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.119987 (sd 0.22836)
NULL Deviance : 0.05205 (sd 5.5597e-05)
Fit Deviance : 0.05338 (sd 0.019168)
Explained Deviance : -0.00133 (sd 0.019171)
Percent Deviance Explained : -2.5574 (sd 36.82)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.089 (sd 0.11083)
Confusion Matrix:
observed
predicted 1 0
1 5 63
0 15 4929
AUC : 0.95513 (sd 0.075867)
Percent Correctly Classified : 98.44451 (sd 0.95188)
Sensitivity : 0.25 (sd 0.26352)
Specificity : 0.987388 (sd 0.0098456)
Kappa : 0.1191744 (sd 0.16753)
True Skill Statistic : 0.237388 (sd 0.26053)
Calibration Statistics
Intercept (general calibration) : -1.205048 (sd 1.5421)
Slope (direction and variation in fit) : 0.5844538 (sd 0.29831)
Testa0b1 (overall reliability of predictors) : 0.1231621 (sd 0.16041)
Testa0|b1(incorrect calibration given correct refinement) : 0.2676612 (sd 0.19577)
Testb1|a (refinement given correct calibration) : 0.1238347 (sd 0.1905)
Total time = 5.2 min
MARS
Random Forests
MARS Model Results
Data:
G:\Results01\16\Model\mars_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 20
n(abs) = 4992
n covariates considered = 7
total time for model fitting = 0.1min
Settings:
random seed used : 123
mars degree : 1
mars penalty : 2
Summary of Model:
nsubsets gcv rss
bio05 8 100.0 100.0
bio12 8 88.2 88.7
bio14 8 88.2 88.7
di_all_model 3 16.6 20.7
bio08 1 5.6 9.3
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.4502662
NULL Deviance : 0.05205
Fit Deviance : 0.028718
Explained Deviance : 0.023332
Percent Deviance Explained : 44.826
Threshold Methods based on Sens=Spec
Threshold : 0.01
Confusion Matrix:
observed
predicted 1 0
1 15 180
0 5 4812
AUC : 0.9786
Percent Correctly Classified : 96.30886
Sensitivity : 0.75
Specificity : 0.9639423
Kappa : 0.133261
True Skill Statistic : 0.7139423
Calibration Statistics
Intercept (general calibration) : 0.002699278
Slope (direction and variation in fit) : 1.001874
Testa0b1 (overall reliability of predictors) : 0.9997559
Testa0|b1(incorrect calibration given correct refinement) : 0.9897411
Testb1|a (refinement given correct calibration) : 0.9856641
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.2777736 (sd 0.35647)
NULL Deviance : 0.05205 (sd 5.5597e-05)
Fit Deviance : 0.064123 (sd 0.06129)
Explained Deviance : -0.012073 (sd 0.061277)
Percent Deviance Explained : -23.167 (sd 117.7)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.01 (sd 0)
Confusion Matrix:
observed
predicted 1 0
1 11 191
0 9 4801
AUC : 0.83927 (sd 0.22556)
Percent Correctly Classified : 96.01001 (sd 1.0709)
Sensitivity : 0.55 (sd 0.4378)
Specificity : 0.9617443 (sd 0.010891)
Kappa : 0.09097674 (sd 0.083287)
True Skill Statistic : 0.5117443 (sd 0.4362)
Calibration Statistics
Intercept (general calibration) : -2.447042 (sd 5.5385)
Slope (direction and variation in fit) : 1.588409 (sd 3.6173)
Testa0b1 (overall reliability of predictors) : 0.4277812 (sd 0.38558)
Testa0|b1(incorrect calibration given correct refinement) : 0.5925641 (sd 0.24593)
Testb1|a (refinement given correct calibration) : 0.3344024 (sd 0.32192)
Total time = 0.88 min
Random Forest Modeling Results
Data:
G:\Results01\16\Model\rf_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 20
n(abs) = 4992
n covariates considered = 7
total time for model fitting = 0.14min
Settings:
random seed used : 19680828
n covariates considered at each split : 3
n trees : 1000
Relative performance of predictors in final model:
0 1 MeanDecreaseAccuracy MeanDecreaseGini
bio08 22.1651 -1.1370 22.9288 4.2575
bio05 17.0463 21.4918 18.5589 3.9701
bio12 13.3191 10.4016 14.6391 4.5877
bio18 12.4604 -5.9868 12.2227 3.1675
bio14 9.3997 4.0751 10.5854 3.6228
bio02 9.6192 1.1771 10.1151 2.6032
di_all_model -3.9746 13.2270 0.5199 3.0839
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.3189668
NULL Deviance : 0.05205
Fit Deviance : 0.034084
Explained Deviance : 0.017966
Percent Deviance Explained : 34.516
Threshold Methods based on Sens=Spec
Threshold : 0.01
Confusion Matrix:
observed
predicted 1 0
1 17 173
0 3 4819
AUC : 0.936
Percent Correctly Classified : 96.48843
Sensitivity : 0.85
Specificity : 0.9653446
Kappa : 0.1558091
True Skill Statistic : 0.8153446
Calibration Statistics
Intercept (general calibration) : -0.3008491
Slope (direction and variation in fit) : 1.095711
Testa0b1 (overall reliability of predictors) : 0.0182118
Testa0|b1(incorrect calibration given correct refinement) : 0.007410161
Testb1|a (refinement given correct calibration) : 0.3592205
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.3213132 (sd 0.24411)
NULL Deviance : 0.05205 (sd 5.5597e-05)
Fit Deviance : 0.032148 (sd 0.012852)
Explained Deviance : 0.019902 (sd 0.012835)
Percent Deviance Explained : 38.244 (sd 24.651)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.4205 (sd 0.028524)
Confusion Matrix:
observed
predicted 1 0
1 1 8
0 19 4984
AUC : 0.93698 (sd 0.11012)
Percent Correctly Classified : 99.4614 (sd 0.26636)
Sensitivity : 0.05 (sd 0.15811)
Specificity : 0.9983984 (sd 0.0024588)
Kappa : 0.06497629 (sd 0.21111)
True Skill Statistic : 0.0483984 (sd 0.15869)
Calibration Statistics
Intercept (general calibration) : -0.02095493 (sd 1.4321)
Slope (direction and variation in fit) : 1.226665 (sd 0.61931)
Testa0b1 (overall reliability of predictors) : 0.5330983 (sd 0.26014)
Testa0|b1(incorrect calibration given correct refinement) : 0.7092371 (sd 0.2689)
Testb1|a (refinement given correct calibration) : 0.3739159 (sd 0.20802)
Total time = 2.36 min