General Linear Models
Boosted Regression Trees
Multivariate Regression Splines
Random Forests
Current Conditions According to Model
Predictions - RCP45, 2050
Predictions - RCP45, 2070
Predictions - RCP85, 2050
Predictions - RCP85, 2070
Ensemble Present Model Average
Correlation Matrix
Model Fit Details
General Linear Models
Boosted Regression Trees
Generalized Linear Model Results
Data:
C:\Withrow\Workspace\Model\glm_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 195
n(abs) = 4807
n covariates considered = 7
total time for model fitting = 0.66min
Settings:
model family : binomial
simplification method : AIC
Results:
number covariates in final model : 15
Call:
glm(formula = response ~ I(bio10^2) + I(bio14^2) + bio09 + bio15 +
I(bio03^2) + bio03 + bio14 + di_all_model + I(bio09^2) +
bio10 + I(bio15^2) + bio03:di_all_model + bio14:di_all_model +
di_all_model:bio10 + bio15:bio14, family = model.family,
data = dat, weights = weight, na.action = "na.exclude")
Deviance Residuals:
Min 1Q Median 3Q Max
-2.1768 -0.0041 0.0000 0.0000 4.4658
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.627e+02 5.315e+01 -4.943 7.69e-07 ***
I(bio10^2) -3.421e-03 9.058e-04 -3.777 0.000159 ***
I(bio14^2) -5.703e-02 1.286e-02 -4.434 9.25e-06 ***
bio09 -3.670e-01 1.151e-01 -3.187 0.001439 **
bio15 -8.153e-01 3.024e-01 -2.696 0.007018 **
I(bio03^2) -1.342e-01 2.647e-02 -5.068 4.03e-07 ***
bio03 1.208e+01 2.394e+00 5.047 4.48e-07 ***
bio14 3.016e-01 8.782e-01 0.343 0.731237
di_all_model 2.309e+00 3.752e-01 6.154 7.54e-10 ***
I(bio09^2) 2.716e-03 7.993e-04 3.398 0.000679 ***
bio10 5.117e-01 1.536e-01 3.331 0.000864 ***
I(bio15^2) 6.801e-03 2.016e-03 3.373 0.000743 ***
bio03:di_all_model -2.489e-02 6.091e-03 -4.086 4.39e-05 ***
bio14:di_all_model -3.944e-02 6.508e-03 -6.060 1.36e-09 ***
di_all_model:bio10 -5.890e-03 1.098e-03 -5.365 8.11e-08 ***
bio15:bio14 1.835e-02 9.732e-03 1.886 0.059332 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1647.69 on 5001 degrees of freedom
Residual deviance: 429.52 on 4986 degrees of freedom
AIC: 461.52
Number of Fisher Scoring iterations: 14
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.8075041
NULL Deviance : 0.32941
Fit Deviance : 0.085871
Explained Deviance : 0.24354
Percent Deviance Explained : 73.932
Threshold Methods based on Sens=Spec
Threshold : 0.07
Confusion Matrix:
observed
predicted 1 0
1 188 188
0 7 4619
AUC : 0.9917
Percent Correctly Classified : 96.10156
Sensitivity : 0.9641026
Specificity : 0.9608904
Kappa : 0.6400113
True Skill Statistic : 0.9249929
Calibration Statistics
Intercept (general calibration) : 0.0008175833
Slope (direction and variation in fit) : 1.003496
Testa0b1 (overall reliability of predictors) : 0.9988528
Testa0|b1(incorrect calibration given correct refinement) : 0.9951044
Testb1|a (refinement given correct calibration) : 0.9620988
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.7933885 (sd 0.047822)
NULL Deviance : 0.32938 (sd 0.0065522)
Fit Deviance : 0.095042 (sd 0.025135)
Explained Deviance : 0.23433 (sd 0.026049)
Percent Deviance Explained : 71.133 (sd 7.785)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.075 (sd 0.0097183)
Confusion Matrix:
observed
predicted 1 0
1 182 185
0 13 4622
AUC : 0.98979 (sd 0.0057616)
Percent Correctly Classified : 96.04215 (sd 0.81743)
Sensitivity : 0.9334211 (sd 0.054725)
Specificity : 0.9615172 (sd 0.0088225)
Kappa : 0.6316821 (sd 0.050381)
True Skill Statistic : 0.8949383 (sd 0.053009)
Calibration Statistics
Intercept (general calibration) : -0.004901783 (sd 0.2887)
Slope (direction and variation in fit) : 0.9690362 (sd 0.28837)
Testa0b1 (overall reliability of predictors) : 0.5188681 (sd 0.29879)
Testa0|b1(incorrect calibration given correct refinement) : 0.5930299 (sd 0.22795)
Testb1|a (refinement given correct calibration) : 0.4168679 (sd 0.30081)
Total time = 6.53 min
Boosted Regression Tree Modeling Results
Data:
C:\Withrow\Workspace\Model\brt_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 195
n(abs) = 4807
n covariates considered = 7
total time for model fitting = 0.32min
Settings:
random seed used : 19680828
tree complexity : 9
learning rate : 0.0811
n(trees) : 300
model simplification : cross-validation
n folds : 3
n covariates in final model : 5
Relative influence of predictors in final model:
Var rel.inf
bio10 28.856361
bio12 23.473090
bio15 20.295401
bio14 18.701929
bio03 8.673219
Important interactions in final model:
v1 name1 v2 name2
4 bio14 2 bio10
3 bio12 2 bio10
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.9888062
NULL Deviance : 0.32941
Fit Deviance : 0.01304
Explained Deviance : 0.31637
Percent Deviance Explained : 96.041
Threshold Methods based on Sens=Spec
Threshold : 0.385
Confusion Matrix:
observed
predicted 1 0
1 195 0
0 0 4807
AUC : 1
Percent Correctly Classified : 100
Sensitivity : 1
Specificity : 1
Kappa : 1
True Skill Statistic : 1
Calibration Statistics
Intercept (general calibration) : 29.90151
Slope (direction and variation in fit) : 62.89941
Testa0b1 (overall reliability of predictors) : 6.550316e-15
Testa0|b1(incorrect calibration given correct refinement) : 0.9836434
Testb1|a (refinement given correct calibration) : 6.661338e-16
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.7358395 (sd 0.074194)
NULL Deviance : 0.32938 (sd 0.0065522)
Fit Deviance : 0.12623 (sd 0.032076)
Explained Deviance : 0.20314 (sd 0.035756)
Percent Deviance Explained : 61.576 (sd 10.124)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.3265 (sd 0.10223)
Confusion Matrix:
observed
predicted 1 0
1 136 75
0 59 4732
AUC : 0.98535 (sd 0.0070939)
Percent Correctly Classified : 97.32119 (sd 1.1554)
Sensitivity : 0.6957895 (sd 0.12435)
Specificity : 0.9844027 (sd 0.011561)
Kappa : 0.6595768 (sd 0.11496)
True Skill Statistic : 0.6801922 (sd 0.12369)
Calibration Statistics
Intercept (general calibration) : -0.07101521 (sd 0.40546)
Slope (direction and variation in fit) : 0.7518502 (sd 0.10413)
Testa0b1 (overall reliability of predictors) : 0.2274844 (sd 0.3005)
Testa0|b1(incorrect calibration given correct refinement) : 0.4562794 (sd 0.28891)
Testb1|a (refinement given correct calibration) : 0.1605794 (sd 0.23741)
Total time = 3.1 min
MARS
Random Forests
MARS Model Results
Data:
C:\Withrow\Workspace\Model\mars_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 195
n(abs) = 4807
n covariates considered = 7
total time for model fitting = 0.05min
Settings:
random seed used : 123
mars degree : 1
mars penalty : 2
Summary of Model:
nsubsets gcv rss
bio10 16 100.0 100.0
bio14 14 72.9 73.5
di_all_model 13 54.6 55.8
bio15 11 46.8 48.1
bio03 8 30.1 31.7
bio12 5 17.8 19.7
bio09 3 9.7 11.9
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.7690535
NULL Deviance : 0.32941
Fit Deviance : 0.099552
Explained Deviance : 0.22985
Percent Deviance Explained : 69.778
Threshold Methods based on Sens=Spec
Threshold : 0.09
Confusion Matrix:
observed
predicted 1 0
1 187 199
0 8 4608
AUC : 0.9888
Percent Correctly Classified : 95.86166
Sensitivity : 0.9589744
Specificity : 0.958602
Kappa : 0.624254
True Skill Statistic : 0.9175764
Calibration Statistics
Intercept (general calibration) : 0.0007133962
Slope (direction and variation in fit) : 1.001847
Testa0b1 (overall reliability of predictors) : 0.9995877
Testa0|b1(incorrect calibration given correct refinement) : 0.9953809
Testb1|a (refinement given correct calibration) : 0.9775579
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.7460489 (sd 0.034581)
NULL Deviance : 0.32938 (sd 0.0065522)
Fit Deviance : 0.11217 (sd 0.017382)
Explained Deviance : 0.2172 (sd 0.018442)
Percent Deviance Explained : 65.934 (sd 5.3301)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.085 (sd 0.01354)
Confusion Matrix:
observed
predicted 1 0
1 183 227
0 12 4580
AUC : 0.985 (sd 0.0067731)
Percent Correctly Classified : 95.22267 (sd 1.4656)
Sensitivity : 0.9384211 (sd 0.039779)
Specificity : 0.9527858 (sd 0.015478)
Kappa : 0.5913155 (sd 0.080896)
True Skill Statistic : 0.8912069 (sd 0.039593)
Calibration Statistics
Intercept (general calibration) : -0.03967198 (sd 0.37004)
Slope (direction and variation in fit) : 0.9489021 (sd 0.13885)
Testa0b1 (overall reliability of predictors) : 0.5659838 (sd 0.27488)
Testa0|b1(incorrect calibration given correct refinement) : 0.5169641 (sd 0.25051)
Testb1|a (refinement given correct calibration) : 0.5449553 (sd 0.24789)
Total time = 0.59 min
Random Forest Modeling Results
Data:
C:\Withrow\Workspace\Model\rf_1\CovariateCorrelationOutputMDS_initial.csv
n(pres) = 195
n(abs) = 4807
n covariates considered = 7
total time for model fitting = 0.11min
Settings:
random seed used : 19680828
n covariates considered at each split : 3
n trees : 1000
Relative performance of predictors in final model:
0 1 MeanDecreaseAccuracy MeanDecreaseGini
bio10 44.0280 75.7081 63.3723 46.8452
bio03 51.9742 23.8794 59.1569 22.3452
bio14 42.5782 39.5556 48.5770 39.5446
di_all_model 24.6222 38.3208 40.0840 23.5777
bio09 30.6303 29.6398 37.2735 25.5106
bio12 21.5290 50.6364 36.4988 40.8956
bio15 27.9912 37.6882 32.3307 37.8963
============================================================
Evaluation Statistics applied to train split:
Correlation Coefficient : 0.8014537
NULL Deviance : 0.32941
Fit Deviance : 0.097234
Explained Deviance : 0.23217
Percent Deviance Explained : 70.482
Threshold Methods based on Sens=Spec
Threshold : 0.05
Confusion Matrix:
observed
predicted 1 0
1 184 268
0 11 4539
AUC : 0.9867
Percent Correctly Classified : 94.42223
Sensitivity : 0.9435897
Specificity : 0.944248
Kappa : 0.5439374
True Skill Statistic : 0.8878377
Calibration Statistics
Intercept (general calibration) : 0.07814332
Slope (direction and variation in fit) : 1.181854
Testa0b1 (overall reliability of predictors) : 0.004401969
Testa0|b1(incorrect calibration given correct refinement) : 0.2693134
Testb1|a (refinement given correct calibration) : 0.001913031
============================================================
Evaluation Statistics applied to crossValidation split:
Correlation Coefficient : 0.7973668 (sd 0.047186)
NULL Deviance : 0.32938 (sd 0.0065522)
Fit Deviance : 0.096543 (sd 0.021529)
Explained Deviance : 0.23283 (sd 0.024238)
Percent Deviance Explained : 70.645 (sd 6.7839)
Threshold Methods based on Sens=Spec
Mean Threshold : 0.477 (sd 0.0078881)
Confusion Matrix:
observed
predicted 1 0
1 136 29
0 59 4778
AUC : 0.98867 (sd 0.0070616)
Percent Correctly Classified : 98.24076 (sd 0.48762)
Sensitivity : 0.6957895 (sd 0.08707)
Specificity : 0.9939674 (sd 0.0035939)
Kappa : 0.7448246 (sd 0.071282)
True Skill Statistic : 0.6897569 (sd 0.087318)
Calibration Statistics
Intercept (general calibration) : 0.2421894 (sd 0.45577)
Slope (direction and variation in fit) : 1.257461 (sd 0.25856)
Testa0b1 (overall reliability of predictors) : 0.4425566 (sd 0.3267)
Testa0|b1(incorrect calibration given correct refinement) : 0.5892847 (sd 0.27761)
Testb1|a (refinement given correct calibration) : 0.336022 (sd 0.27525)
Total time = 1.53 min